Presentation is loading. Please wait.

Presentation is loading. Please wait.

10/27-28/14 Starter: 1.What is photosynthesis? 2.10/28- What structure in the plant contains chlorophyll? What are the products and reactants of photosynthesis?

Similar presentations


Presentation on theme: "10/27-28/14 Starter: 1.What is photosynthesis? 2.10/28- What structure in the plant contains chlorophyll? What are the products and reactants of photosynthesis?"— Presentation transcript:

1 10/27-28/14 Starter: 1.What is photosynthesis? 2.10/28- What structure in the plant contains chlorophyll? What are the products and reactants of photosynthesis? 10/27-28/14 Photosynthesis notes Application/Connection/Exit: Notes and ws Practice: Questions: 1 What is photosynthesis? 2. What organisms conduct photosynthesis? 3. If plants get their energy/food from photosynthesis, how do animals get their energy/food Photosynthesis notes 81 82

2 October 27, 2014 AGENDA B.9 B. I will Compare the reactants and products of photosynthesis and cellular respiration in terms of energy and matter while completing notes. 1 Starter 2. Notes 3. Exit

3 Date Lecture/ Activity/ Lab Page 10/14 Eukaryotic and Prokaryotic Poster 67-68 10/15 Osmosis Lab 69-70 10/16 Osmosis Lab Day II 71-72 10/17 Osmosis Lab Day III and Quiz 73-74 10/20 Cell Analogies Poster 75-76 10/21 Experimental Design 77-78 10/22 Test Review 79-80 10/27-28 Photosynthesis Notes 81-82 Table of Contents

4 PHOTOSYNTHESIS

5 5 Photosynthesis Anabolic (small molecules combined)Anabolic (small molecules combined) Endergonic (stores energy)Endergonic (stores energy) Carbon dioxide (CO 2 ) requiring process that uses light energy (photons) and water (H 2 O) to produce organic macromolecules (glucose).Carbon dioxide (CO 2 ) requiring process that uses light energy (photons) and water (H 2 O) to produce organic macromolecules (glucose). 6CO 2 + 6H 2 O  C 6 H 12 O 6 + 6O 2 glucose SUN photons

6 6 Question: Where does photosynthesis take place?

7 7 Plants Autotrophs – produce their own food (glucose)Autotrophs – produce their own food (glucose) Process called photosynthesisProcess called photosynthesis Mainly occurs in the leaves:Mainly occurs in the leaves: a.stoma - pores b.mesophyll cells Stoma Mesophyll Cell Chloroplast

8 8 Stomata (stoma) Pores in a plant’s cuticle through which water vapor and gases (CO 2 & O 2 ) are exchanged between the plant and the atmosphere. Guard Cell Carbon Dioxide (CO 2 ) Oxygen (O 2 ) Found on the underside of leaves Stoma

9 9 Mesophyll Cell of Leaf Cell Wall Nucleus Chloroplast Central Vacuole Photosynthesis occurs in these cells!

10 10 Chloroplast Organellephotosynthesis Organelle where photosynthesis takes place. Granum Thylakoid Stroma Outer Membrane Inner Membrane Thylakoid stacks are connected together

11 11 Thylakoid Thylakoid Membrane Thylakoid Space Granum Grana make up the inner membrane

12 12 Question: Why are plants green?

13 13 Chlorophyll Molecules Located in the thylakoid membranesLocated in the thylakoid membranes Chlorophyll have Mg + in the centerChlorophyll have Mg + in the center Chlorophyll pigments harvest energy (photons) by absorbing certain wavelengths (blue-420 nm and red- 660 nm are most important)Chlorophyll pigments harvest energy (photons) by absorbing certain wavelengths (blue-420 nm and red- 660 nm are most important) Plants are green because the green wavelength is reflected, not absorbedPlants are green because the green wavelength is reflected, not absorbed.

14 14

15 15 Wavelength of Light (nm) 400500600700 Short waveLong wave (more energy)(less energy)

16 16 Absorption of Light by Chlorophyll wavelength Absorption violet blue green yellow orange red Chlorophyll absorbs blue-violet & red light best

17 17 Question: During the fall, what causes the leaves to change colors?

18 18 Fall Colors In addition to the chlorophyll pigments, there are other pigments presentIn addition to the chlorophyll pigments, there are other pigments present During the fall, the green chlorophyll pigments are greatly reduced revealing the other pigmentsDuring the fall, the green chlorophyll pigments are greatly reduced revealing the other pigments Carotenoids are pigments that are either red, orange, or yellowCarotenoids are pigments that are either red, orange, or yellow

19 19 Redox Reaction The transfer of one or more electrons from one reactant to another Two types: 1.Oxidation is the loss of e - 2.Reduction is the gain of e -

20 20 Oxidation Reaction The loss of electrons from a substance or the gain of oxygen. glucose 6CO 2 + 6H 2 O  C 6 H 12 O 6 + 6O 2 Oxidation Carbon dioxide Water Oxygen

21 21 Reduction Reaction The gain of electrons to a substance or the loss of oxygen. glucose 6CO 2 + 6H 2 O  C 6 H 12 O 6 + 6O 2 Reduction

22 22 Question: Why do cells use for energy?

23 23 Energy for Life on Earth Sunlight is the ULTIMATE energy for all life on Earth Plants store energy in the chemical bonds of sugars Chemical energy is released as ATP during cellular respiration

24 24 Structure of ATP ATP stands for adenosine triphosphate It is composed of the nitrogen base ADENINE, the pentose (5C) sugar RIBOSE, and three PHOSPHATE groups The LAST phosphate group is bonded with a HIGH ENERGY chemical bond This bond can be BROKEN to release ENERGY for CELLS to use

25 25 Removing a Phosphate from ATP Breaking the LAST PHOSPHATE bond from ATP, will --- –Release ENERGY for cells to use –Form ADP –Produce a FREE PHOSPHATE GROUP

26 26 High Energy Phosphate Bond

27 27 FREE PHOSPHATE can be re-attached to ADP reforming ATP Process called Phosphorylation

28 28 Phosphorylation

29 29 Parts of Photosynthesis

30 30 Two Parts of Photosynthesis Two reactions make up photosynthesis: 1.Light Reaction or Light Dependent Reaction - Produces energy from solar power (photons) in the form of ATP and NADPH. SUN

31 31 Two Parts of Photosynthesis 2. Calvin Cycle or Light Independent Reaction Also called Carbon Fixation or C 3 FixationAlso called Carbon Fixation or C 3 Fixation Uses energy (ATP and NADPH) from light reaction to make sugar (glucose).Uses energy (ATP and NADPH) from light reaction to make sugar (glucose).

32 32 Light Reaction (Electron Flow) Occurs in the Thylakoid membranesOccurs in the Thylakoid membranes During the light reaction, there are two possible routes for electron flow:During the light reaction, there are two possible routes for electron flow: A.Cyclic Electron Flow B.Noncyclic Electron Flow

33 33 Cyclic Electron Flow Occurs in the thylakoid membrane.Occurs in the thylakoid membrane. Uses Photosystem I onlyUses Photosystem I only P700 reaction center- chlorophyll aP700 reaction center- chlorophyll a Uses Electron Transport Chain (ETC)Uses Electron Transport Chain (ETC) Generates ATP onlyGenerates ATP only ADP + ATP P

34 34 Cyclic Electron Flow P700 Primary Electron Acceptor e-e- e-e- e-e- e-e- ATP produced by ETC Photosystem I Accessory Pigments SUN Photons Pigments absorb light energy & excite e- of Chlorophyll a to produce ATP

35 35 Noncyclic Electron Flow Occurs in the thylakoid membraneOccurs in the thylakoid membrane Uses Photosystem II and Photosystem IUses Photosystem II and Photosystem I P680 reaction center (PSII) - chlorophyll aP680 reaction center (PSII) - chlorophyll a P700 reaction center (PS I) - chlorophyll aP700 reaction center (PS I) - chlorophyll a Uses Electron Transport Chain (ETC)Uses Electron Transport Chain (ETC) Generates O 2, ATP and NADPHGenerates O 2, ATP and NADPH

36 36 Noncyclic Electron Flow P700 Photosystem I P680 Photosystem II Primary Electron Acceptor Primary Electron Acceptor ETC Enzyme Reaction H 2 O 1/2O 2 1/2O 2 + 2H + ATP NADPH Photon 2e - SUN Photon H 2 O is split in PSII & ATP is made, while the energy carrier NADPH is made in PSI

37 37 Noncyclic Electron Flow ADP +  ATPADP +  ATP NADP + + H  NADPHNADP + + H  NADPH Oxygen comes from the splitting of H 2 O, not CO 2Oxygen comes from the splitting of H 2 O, not CO 2 H 2 O  1/2 O 2 + 2H + H 2 O  1/2 O 2 + 2H + P

38 38 Chemiosmosis Powers ATP synthesisPowers ATP synthesis Takes place across the thylakoid membraneTakes place across the thylakoid membrane Uses ETC and ATP synthase (enzyme)Uses ETC and ATP synthase (enzyme) H+ move down their concentration gradient through channels of ATP synthase forming ATP from ADPH+ move down their concentration gradient through channels of ATP synthase forming ATP from ADP

39 39 Chemiosmosis

40 40 Calvin Cycle Carbon Fixation (light independent reaction)Carbon Fixation (light independent reaction) C 3 plants (80% of plants on earth)C 3 plants (80% of plants on earth) Occurs in the stroma Occurs in the stroma Uses ATP and NADPH from light reaction as energyUses ATP and NADPH from light reaction as energy Uses CO 2Uses CO 2 To produce glucose: it takes 6 turns and uses 18 ATP and 12 NADPH.To produce glucose: it takes 6 turns and uses 18 ATP and 12 NADPH.

41 41 Chloroplast Granum Thylakoid STROMA– where Calvin Cycle occurs Outer Membrane Inner Membrane

42 42 Calvin Cycle (C 3 fixation) 6CO 2 6C-C-C-C-C-C 6C-C-C 6C-C-C-C-C 12PGA RuBP 12G 3 P (unstable) 6NADPH 6ATP C-C-C-C-C-C Glucose (6C) (36C) (30C) (6C) 6C-C-C C3C3 glucose

43 43 Calvin Cycle Remember: C 3 = Calvin Cycle C3C3 Glucose

44 44 Photorespiration Occurs on hot, dry, bright daysOccurs on hot, dry, bright days Stomates closeStomates close Fixation of O 2 instead of CO 2Fixation of O 2 instead of CO 2 Produces 2-C molecules instead of 3-C sugar moleculesProduces 2-C molecules instead of 3-C sugar molecules Produces no sugar molecules or no ATPProduces no sugar molecules or no ATP

45 45 Photorespiration Because of photorespiration, plants have special adaptations to limit the effect of photorespiration: 1.C 4 plants 2.CAM plants

46 46 C 4 Plants Hot, moist environmentsHot, moist environments 15% of plants (grasses, corn, sugarcane)15% of plants (grasses, corn, sugarcane) Photosynthesis occurs in 2 placesPhotosynthesis occurs in 2 places Light reaction - mesophyll cellsLight reaction - mesophyll cells Calvin cycle - bundle sheath cellsCalvin cycle - bundle sheath cells

47 47 C 4 Plants Mesophyll Cell CO 2 C-C-C PEP C-C-C-C Malate-4C sugar ATP Bundle Sheath Cell C-C-C Pyruvic Acid C-C-C-C CO 2 C3C3 Malate Transported glucose Vascular Tissue

48 48 CAM Plants Hot, dry environmentsHot, dry environments 5% of plants (cactus and ice plants)5% of plants (cactus and ice plants) Stomates closed during dayStomates closed during day Stomates open during the nightStomates open during the night Light reaction - occurs during the dayLight reaction - occurs during the day Calvin Cycle - occurs when CO 2 is presentCalvin Cycle - occurs when CO 2 is present

49 49 CAM Plants Night (Stomates Open)Day (Stomates Closed) Vacuole C-C-C-C Malate C-C-C-C Malate C-C-C-C CO 2 C3C3 C-C-C Pyruvic acid ATP C-C-C PEP glucose

50 50 Question: Why do CAM plants close their stomata during the day?

51 Cam plants close their stomata in the hottest part of the day to conserve water

52 10/27-28/14 Starter: 1.What is photosynthesis? 2.10/28- What structure in the plant contains chlorophyll? 10/27-28/14 Photosynthesis notes Application/Connection/Exit: Notes and ws Practice: Questions: 1 What is photosynthesis? 2. What organisms conduct photosynthesis? 3. If plants get their energy/food from photosynthesis, how do animals get their energy/food Photosynthesis notes 81 82


Download ppt "10/27-28/14 Starter: 1.What is photosynthesis? 2.10/28- What structure in the plant contains chlorophyll? What are the products and reactants of photosynthesis?"

Similar presentations


Ads by Google