Presentation is loading. Please wait.

Presentation is loading. Please wait.

Perineural Blocks for Postoperative Pain After Upper Limb Surgery

Similar presentations


Presentation on theme: "Perineural Blocks for Postoperative Pain After Upper Limb Surgery"— Presentation transcript:

1 Perineural Blocks for Postoperative Pain After Upper Limb Surgery
1st Congress of Slovenian Association for Pain Therapy October 9-10 Bled, Slovenia S. Gligorijevic MD City Hospital Waid Zürich Medical School University of Zürich Switzerland

2 Why is postoperative pain still undermanaged ?
Difficulties to understand the pain pathways lead often to misconception that postoperative pain is a short, self-limited entity Goals are frequently not clear Organisational obstacles Advances in knowledge do not necessarily lead to the same degree of progress in patient care Significant room for further improvement in postoperative pain management

3 Newer Developments in Postoperative Pain Management
Drugs Non-opioids (NSAID’s,coxibs), ketamine, pregabalin, corticosteroids Local anaesthetics (ropivacaine, levobupivacaine) Adjuvants – in techniques such as epidural, perineural, i.v. PCA Drug delivery systems (transdermal PCA, intranasal, long-acting epidural morphine, sublingual NSAID, perineural/incisional catheter LA at home) Concepts (PROSPECT, multimodal, preemptive) Web-based guidelines Outcome debate (cost-effectiveness, risk-benefits, evidence-based) Organizational issues (APS, role of surgeons, audits)

4 Pharmacological Options for Postoperative Pain Management
Pharmacological Options for Postoperative Pain Management Concept of Multimodal Analgesia NO Sites of action of local anaesthetics

5 Postoperative analgesia - what are the challenges?
Increasing co-morbidity Ageing population Obesity Concurrent medical problems Changing surgical demands Early mobilisation / accelerated rehabilitation / day surgery Decreasing role of epidural analgesia No major advantages in outcome compared to alternatives Risk of complications higher than previously reported Minimal invasive and/or ambulatory surgery Patients’ preference 5

6 Optimal perioperative analgesia
Benefits of PNB,s Quality of pain relief you will never ever achieve with any other single systemic drug or their combination or with so called multiple approach Continuous analgesia (during & following the surgery) Adjustable to pain intensity & duration Suitable for pain of different origin Appropriate for large number of patients Minimal risks to patient, minimal side effects Early mobilisation/fast rehabilitation

7 postop. Analgesia PNB lower
Recent Developments of PNB Techniques Facilitating Factors / Improved Logistics I Increased educational efforts Training programs, RA meetings, videos, websites, guidelines, cadaver workshops, live models, companies contribution  Improved knowledge of anatomy Anatomical investigations, new text books Improved nerve localisation techniques Peripheral nerve stimulator has dramatically increased the reliability of nerve location

8 Recent Developments in PNB Techniques III
postop. Analgesia PNB lower Recent Developments in PNB Techniques III Improved nerve localisation techniques Ultrasound technique: Nerves and surrounding structures are now visible, LA spread can be judged during injection Nerve injury can be avoided ? Improved equipment Needles: Sufficient rigid, good penetrating and gliding needles of appropriate size for specific blocks ,

9 Recent Developments of PNB Techniques IV
postop. Analgesia PNB lower Recent Developments of PNB Techniques IV Proper organization of OR schedule Induction rooms Holding area Enhanced research Acute pain Nerve localisation New approaches Comparative studies with other methods Meta - analyses

10 Pessimist’s view: Peripheral Nerve Blocks Are Not Frequently Used
postop. Analgesia PNB lower Peripheral Nerve Blocks Are Not Frequently Used Pessimist’s view:  Missed education (need for new skills)  Time consuming / labor intensive Multiple injections (frequently needed) Failure rate  Potential for prolonged neurologic deficit

11 Peripheral nerve blocks 1997 2002 n = 21.278 n= 50.223
Serious Complications Related to Regional Anaesthesia The Two Large Prospective Studies Auroy Y et al Anesthesiology 1997;87:479-86 Auroy Y et al Anesthesiology 2002;97: Peripheral nerve blocks n = n= Cardiac arrest * (1,4) (0,2) Death (0,5) (0,2) Seizure **(7,5) (1,2) Neurological injury (1,9) (2,4) ( n/ ) * Vagal, after failed bloc ** All seizures preceded by clinical signs

12 Peripheral Nerve Blocks for Postoperative Analgesia after Upper Limb Surgery

13 Upper Extremity Surgery What Challenges?
Shoulder Very painful Published data that ISB offers benefits for surgery, analgesia and outcome Elbow Difficult positioning Lack of published data but some evidence that infraclavicular/axillary BPB offer perioperative benefits

14 Brachial Plexus Approaches
Inter scalene Infra clavi cular axillary Hadzic A , 2004

15 Brachial Plexus Block After Shoulder Surgery
Placement of interscalene catheter Success rate may vary from 75% - 100% Modified (“parallel”) approaches increase the success rate for catheter placement Boezaart AP, Can J Anesth 1999 Real time ultrasound guidance increases successful catheter placement Yang WT, Am J Roentgenol 1998

16 Pain Control After Shoulder Surgery
postop. Analgesia PNB lower Pain Control After Shoulder Surgery Continuous interscalene block better than opioids ? Advantages over iv PCA ?  Better analgesia  Reduced opioid requirements/reduced PONV  Higher patient satisfaction (at least for the first 48h) Tuominen M, Borgeat A, 1997, 1998, Lehtipalo S, Klein SM, Fredrickson MJ, 2008 Unknown effect on success of physical rehabilitation or duration of hospitalisation Cohen NP, J Shoulder Elbow Surg 2000

17 PCRA (interscalene) vs iv PCA after major shoulder surgery II
RCT, n = 35, surgery under interscalene block PCRA: 0.2% ropivacaine 5ml/h, bolus 3-4 ml, lockout 20 min I.V. PCA: nicomorphine 0.5 mg/h, bolus 2-3 mg, lockout 20 min PONV and pruritus: PCRA 5.5%, i.v. PCA 60% and 20% resp. PCRA technique provided better pain control, lower incidence of side effects and higher degree of patient satisfaction Borgeat A, et al Anesthesiology 2000 ; 2:102-8

18 Tunneled catheters (3-4cm) for 2-5 days
postop. Analgesia PNB lower Acute and Nonacute Complications Associated with Interscalene Blocks and Shoulder Surgery I Borgeat A, Ekatodramis G, Kalberer F, Benz C. Anesthesiology 2001; 95:875-80 Prospective evaluation, 521 patients (234 with catheter, 286 single-injection block) Tunneled catheters (3-4cm) for 2-5 days Single injection of 40 – 50ml Ropivacaine 0,6% Continuous infusion Ropivacaine 0,2%  6h after initial dose

19 Puncture related complications:
Acute and Nonacute Complications Associated with Interscalene Blocks and Shoulder Surgery II Borgeat A, Ekatodramis G, Kalberer F, Benz C. Anesthesiology 2001; 95:875-80 Puncture related complications: Painful catheter placement (5,6%) Pneumothorax 1 (0,2%) IV injection 1 (0,2%) Vessel puncture 3 (0,6%) Pain on injection 109 (21%) 10th postop.day: Pain not clearly related to surgery 74 (14%) 9th month: 1 symptomatic patient – damage of C6 root after uneventful block  complete recovery in EMG Conclusion: Low long-term complication rate No differences between catheter and single- injection technique 19

20 No comparisons with IV PCA or other methods of systemic analgesia
Peripheral Nerve Blocks After Hand and Forearm Surgery Brachial plexus – Axillary approach Prospective studies demonstrate excellent analgesia after hand and forearm surgery with continuous infusion of Bupivacaine 0,2% – 0,25% Success rate of catheter insertion 98% - 100% Ang ET, 1984, Pham-Dang C, 1995, Mezzatesta JP, Salomen M, Reg Anesth Pain Med 2000 No comparisons with IV PCA or other methods of systemic analgesia

21 Distal upper extremity blocks
Indications: ♦ Surgical procedures (ambulatory surgery) Nerve decompression Tendon and nerve repair (preserved mobility) Ganglion, cyst, foreign body removal AV fistula Bilateral surgery ♦ Postoperative pain management (selective analgesia) ♦ Evaluation and treatment of chronic pain ♦ Partially successful brachial plexus block

22 Ulnar Nerve Block at the Elbow
Medial epicondylle Olecranon proces Ulnar n. Superficial branch Deep palmar branch Injection proximal or distal to the sulcus

23 Nerve Blocks at the Elbow
Radial Nerve Block

24 Nerve Blocks at the Wrist
Median nerve block Ulnar nerve block Pierce the deep fascia (bone contact) Inject while withdrawing the needle!

25 Median,ulnar and radial nerves can be consistently seen in the forearm using ultrasound
McCartney CJL, Daquan X, Constantinescu C, Abbas Sh, Chan V Reg Anesth Pain Med 2007;32:

26 Median nerve catheter for postoperative pain relief after hand surgery
Median nerve catheter for postoperative pain relief after hand surgery. Continuous infusion of levo-bupi 0,125% ml/h

27 Elastomeric Balloon Pump Rawal et al Anesth Analg 1998;86:86-9

28 Recommended (grade A):
PROSPECT, , 112 study -132 excluded Anaesthesia 2008;63: Recommended (grade A): Femoral nerve block ( combined with GA or SA pre-/intra-operative) Spinal block with morphine intrathecal NSAID,s / COX-2 inhibitors ( grade A) Paracetamol (grade B) Strong opioids IV for breakthrough pain (grade A) Cooling and compression techniques (grade B)

29 Are continuous PNB,s useful for postoperative rehabilitation?
Three days after TSA - cont ISB group (Ropi 0.2%) with increased range of shoulder motion, most likely resulting from potent analgesia (retrospective study) Ilfeld BM Reg Anesth Pain Med 2005 Continuous ISB provides potent analgesia that permits greater passive shoulder movement Ilfeld BM. Anesthesiology 2006;105: RCT, n=30

30 Are continuous PNB,s always useful for postoperative rehabilitation?
Does Patient-Controlled Continuous Interscalene Block Improve Early Functional Rehabilitation After Open Shoulder Surgery? Hofmann-Kiefer K et al. Anesth Analg 2008;106: RCT, n=87 Open rotator cuff repair or acromioplasty Range of motion and strength of the shoulder &subjective data (Mobility and muscular strength) pre-and postop (Constant –Score ) Continuous ISB Improves analgesia but not postoperative function compared to opioid iv PCA Possible cause: swelling, stiffness and inflammation of the joint

31 Local Anaesthetics Drugs for Continuous Perineural Analgesia
Bupivacaine 0,1 – 0,25 % Plasma level 0,5 – 1 mcg/ml after interscalene block Tuominen M, Acta Anaesthesiol Scand 1987 After lumbar plexus block 0,5 – 1,8 mcg/ml Ganapathy S, Anesth Analg 1999, Aker-Moller E, Acta Anaesthesiol Scnad 1990

32 Peripheral Nerve Blocks After Hand and Forearm Surgery
Ropivacaine for continuous axillary plexus block Salomen M, Reg Anesth Pain Med 2000 RCT, Single block with Ropivacaine 0,75% 5mg/kg Postoperative infusion 0,1% or 0, 2% or saline 6 – 11ml/h for 24 h Results: Postoperative analgesia for 12 – 15h after single injection Similar VAS scores in all groups with continuous infusion No analgesics  Group 0,1 %  47 % Group 0,2 %  45 % Group S  28 %

33 Drugs for Continuous Perineural Analgesia
Ropivacaine has motor block sparing properties in peripheral nerve blocks? Significantly less motor block of the hand with PC interscalene analgesia and Ropivacaine 0,2% compared with Bupivacaine 0,15% Borgeat A, Anesth Analg 2001

34 Which drugs for continuous perineural analgesia ?
ISB after shoulder surgery Double - blinded comparison levo-bupi 0,125% vs bupivacaine 0,2% - no difference Casati A, Borghi B, Fanelli G et al. Anesth Analg 2003;96:

35 Adjuvants for Peripheral Nerve Blocks
Peripheral effects of opioids ? 1. Evidence and recognition of opioid receptors on sensory nerve terminals 2. Opioid effects more pronounced in inflamed tissue - Increased numbers of nerve terminals (nerve sprouting) - Up-regulation of opioid receptors - Disruption of perineurium

36 Adjuvants for Peripheral Nerve Blocks
Does the addition of morphine to brachial plexus block improves analgesia after shoulder surgery? Flory N, Van Gessel E, Donald F, et al. Br J Anesth 1995; 75:23-26 Time from the end of operation to the first administration of analgesic RCT 40 patients Interscalene block with Bupivacaine 0,5 % +Adrenaline vs. addition of morphine 5 mg Conclusion: No significant difference in quality of analgesia between the groups

37 Clonidine as the sole analgesic for postoperative pain administered by axillary approach Sia S, Lepri A:Anesth Analg 1999; 88: RCT, 45 pts Axillary brachial plexus block, 40 ml 1,5 % lidocaine + catheter. Postoperative pain relief regimen (3 groups) Bupivacaine 0,25 % ml Clonidine 150 mcg + Saline 0,9 % 15 ml Saline 0,9 % ml All patients received ketorolac 30 mg im Morphine 5 mg im on request. Conclusion: Administration of 150 mcg clonidine into brachial plexus sheath did not produce postoperative analgesia after hand or forearm surgery

38 Adjuvants for Peripheral Nerve Blocks
Clonidine Clonidine as adjuvant in axillary brachial plexus block in patients with end stage renal disease Adnan T: Acta Anaesthesiol Scand 2005 RTC n= 48, double blind 40 ml 1% Lidocaine with or without Clonidine 150 mcg Conclusion: Clonidine prolongs both motor and sensory block but cause significantly more hypotension, bradycardia and sedation compared with control group

39 Adjuvants for Peripheral Nerve Blocks
Novel Analgesic Adjuncts for Brachial Plexus Block Murphy DB et al Anesth Analg 2000; 90: Systematic review of RCT Agent Total outcomes Systemic control outcomes 10 Opioids 6 supportive 4 systemic control 4 negative 2 supportive, 2 negative 6 no systemic control 4 supportive, 2 negative 6 Clonidine 5 supportive 1 systemic control 1 negative 1 supportive

40 Actually no substantial differential effect on duration of
analgesia related to the type of LA (< 1 h with prilocaine and >4h with levo-bupivacaine)

41 “Man uses his arm and hands constantly and as a result he exposes his arms and hands to injury constantly” Little DM. Classical file. Survey of Anesthesiology 1963; 7:280-5 Complications related to peripheral nerve catheters-what we are afraid of ?

42 postop. Analgesia PNB lower
Neurologic Complications of 405 Consecutive Continuous Axillary Catheters Bradley D et al: Anesth Analg 2003; 96:247-52 Retrospective study Catheters placed postoperatively for 55 ± 32h, Infusion rate:10 ± 2ml/h Bupivacaine 0,125% - 0,25% ( in 87,7% ) Results: Paresthesia with catheter placement pts (14,8 %) Neurologic deficit non related to surgery 2 pts (0,5 %) All patients with neurologic deficit had major elbow surgery

43 Incidence of Serious Adverse Events of CPNB
Capdevilla X. Anesthesiology 2005;103: Serious Adverse Events Interscalene (n=256) Axillary (n=126) PCB (n=20) Femoral (n=683) Distal (n=38) Patients (n) 4 1 3 Nerve lesions 3 (0,4) [0,1-0,9)] Acute respiratory failure 2 (0,8) [0,2-2,1] Laryngeal & rec.n. laryngeal paralysis [0,-1,8] Severe hypotension 3 (15) [4-31,3] Systemic LA toxicity 1 (2,5) [0,3-3,7] Seizure 1 (0,8) [0.05-1,3] Abscess 1 (0,14) [0.01-0,8] n (%) [95% CI No complications related to fascia iliaca (n=94), sciatic (n=32), and popliteal (n=167)block

44 Inflammation = redness, swelling, pain (35% catheter culture positive)
Acta Anaesthesiol Scand 2007;51: Axillary 600,interscalene 303, infraclavicular 92, psoas comp.65, femoral 574,sciatic 296, popliteal 355 Inflammation = redness, swelling, pain (35% catheter culture positive) Infection = pus at insertion site (100% positive culture) Local inflammation pts (4,2%) Infection pts (3,2%) Surgical drainage pts (0,9%) Staph.epidermidis and Staph aureus in 42% and 58% of catheter tips cultures No late complications in any patient. Infection risk increased with duration Higher risk for interscalene than for anterior sciatic catheter

45 Adapted from Neuburger M et al, Acta Anesthesiol Scand 2007;51:108-114
Incidence of Local Inflammation and Infection for Different Perineural Catheters Adapted from Neuburger M et al, Acta Anesthesiol Scand 2007;51: Number of catheters Catheter localization Catheter duration median (range) Incidence (%) of local inflammation Incidence (%) of infection Trauma patients Borgeat , 700 Interscalene 3,2 (1,5-5) days 0,7 0,1 No Cuvillon, 208 Femoral 48 h 4,3 1,4 Borgeat, Borgeat, 237 1.001 Popliteal 60 (48-90) h 2-4 days 0,2 Capdevilla, 2005 1.416 Different 2,3(2-5) days 3,0 0,07 Yes Neuburger, 2007 2.285 4 (1-36) days 4,2 3,2* 30 % *Surgical intervention in 0,9%

46 When to Use Continuous PNB’s?
High initial pain level expected (incl. opioid abuse) Prolonged postoperative pain(< 48h) Early mobilisation - faster rehabilitation Elderly patient Potential for chronic pain development Complications of alternative methods expected

47 Incisional Catheters Simple, safe, inexpensive
Liu, Kehlet Incisional Catheters Simple, safe, inexpensive Catheter placed at correct position under direct vision Eliminates risk of inadvertent penetration of vascular or neural structures (vs. perineural) Only area of surgery affected allowing normal use of extremity and early rehabilitation (vs. perineural) Useful for ambulatory and inpatient surgery

48 Reduction in opioid use
Anesth Analg 2006;102:248-57 19 RCT’s (11 double-blind) Better analgesia for all time periods at 24, 48 and 72 h and all catheters Reduction in opioid use Lower incidence of PONV (21 % vs. 49 %), sedation (27% vs. 52%), and pruritus (10 vs. 27 %) with PNB´s Improved patient satisfaction (4 RCT’s only) ”CPNB, regardless of catheter location, provided superior postoperative analgesia and fewer opioid-related side effects when compared with opioid analgesia”

49 Advantages of peripheral nerve blocks in postoperative pain management
postop. Analgesia PNB lower Advantages of peripheral nerve blocks in postoperative pain management ♦ High quality of analgesia in all types of pain ♦ Surgical site-targeted (continuous) analgesia ♦ Haemodynamic stability (postganglionic, unilateral sympathetic block) ♦ Less concerns regarding coagulation and infection problems ♦ Low complication rate (avoidance of potential risk of alternative methods) ♦ Less intensive ward surveillance ♦ Perineural home infusion

50 Peripheral nerve blocks and outcome from surgery
We are now asking the right questions We have some of the right answers More research is required Advances in surgical practice will continue to challenge anaesthetic and analgesic practice

51 Peripheral nerve block – another point of view
I don’t know much about outcome,but it doesn't hurt me!

52 Thank you for your attention!

53 Potential Economic Benefits of Regional Anaesthesia for Acute Pain Management
Regional anaesthesia appears definitively better than GA/ opioids for orthopaedic procedures But, how to realize the benefits? Advances in surgical techniques & perioperative care have drastically increased NNT values of analgesic interventions Lack of trained personnel and resource support – recent staffing and productivity models are based on GA practice not considering PACU bypass, same day discharge criteria, RA-induction room Wiliams BA, Reg Anesth Pain Med, 2006

54 Advantages of incisional catheter techniques
Simple, safe, inexpensive Catheter placed at correct position under direct vision Eliminates risk of inadvertent penetration of vascular or neural structures (vs perineural) Only area of surgery affected allowing normal use of extremity and early rehabilitation (vs perineural) Useful for ambulatory and inpatient surgery

55 Why PNB,s for postoperative analgesia?
Decreasing role of neuraxial techniques No major advantages in outcome ( except orthopedics procedures) Higher risk of complications than previously reported Minimal invasive surgery Increasing co-morbidity Ageing population Obesity Changing surgical demands Early mobilisation / accelerated rehabilitation (cont. passive motion concept)

56 Why regional block for postoperative analgesia?
Analgesia during and after operation Sympathetic block Muscle relaxation Preservation of consciousness Abolition of stress response Reduced morbidity & mortality Quality of pain relief you will never ever achieve with any other single systemic drug or their combination or with so called multiple approach


Download ppt "Perineural Blocks for Postoperative Pain After Upper Limb Surgery"

Similar presentations


Ads by Google