Presentation is loading. Please wait.

Presentation is loading. Please wait.

Convex lens Thicker central part P.66 Concave lens Thinner central part P.66.

Similar presentations


Presentation on theme: "Convex lens Thicker central part P.66 Concave lens Thinner central part P.66."— Presentation transcript:

1

2

3

4 Convex lens Thicker central part P.66

5 Concave lens Thinner central part P.66

6 Cylindrical convex lens Convex in 1 direction only P.66

7 Cylindrical concave lens Concave in 1 direction only P.66

8 Convex lens Concave lens Converging lens Diverging lens Light rays are converged Light rays are diverged P.66

9 Light ray bends towards normal when it travels from less dense medium to denser medium Light ray bends away from normal when it travels from denser medium to less dense medium P.66

10 Light ray bends towards normal when it travels from less dense medium to denser medium Light ray bends away from normal when it travels from denser medium to less dense medium P.66

11 CFF’ 2F 2F’ f P.66

12 C F F’ 2F 2F’ f P.66

13 Compare f and f’ P.66

14

15 P.67

16 Locate the image of a distant object f = separation between the lens & screen P.67

17 f

18 Image is inverted Same size u = v P.67

19 f

20 P.68

21 FF’ P.68

22

23

24 Focal length f Thin lens Thick lens Refractive index n Radii of curvature Long focal lengthShort focal length P.68

25 C Light ray passes straight through the optical centre P.68 Rule 1

26 C Light ray passes straight through the optical centre P.68 Rule 1

27 F P.68 Rule 2

28 F P.68 Rule 2

29 F P.68 Rule 3

30 F’F P.68 Rule 3

31 P.69 Concave Lens Diverging X X X X

32 P.69 Rule 2 Correct Diverging Rule 3 Correct Rule 3Correct Converging Incorrect

33 Experiment : Construction rules P.69

34 Object O FF’ Any 2 light rays from construction rules Image I Solid lines denote real light ray & real image P.69

35 Object O FF’ Any 2 light rays from construction rules Dotted lines denote line extended & virtual image Image I P.69

36

37 Object O FF’ Image I P.69 Q1

38 P.69

39 FF’ O I P.69 Can find the location of the image

40 FF’ O I P.69 Can find the location of the object

41 O I P.69 Can find the location of lens

42 Ray diagram ObjectImageFocal length Any 2 3rd P.69

43 P.70

44 FF’ I u =  Object at infinity is represented by a set of parallel light rays Image Real Inverted Diminished v = f P.70

45

46

47 I u > 2f O FF’2F2F’ Image 2f > v > f Real Inverted Diminished P.70

48

49

50 I u = 2f Same size O FF’ 2F2F 2F’ v = 2f Image Real Inverted P.70

51

52 I 2f > u > f Enlarged O FF’ 2F 2F’ v > 2f Image Real Inverted P.70

53

54 FF’ u = f v =  O Image Real Inverted Image at infinity is represented by a set of parallel light rays P.70

55

56 I u < f VirtualUpright O FF’ 2F 2F’ Same side Enlarged Image P.70

57

58

59 Object Image Infinity F Real Inverted Diminished Same size Enlarged 2FF Infinity P.70

60 F Object Image Virtual ErectSame side Enlarged Optical centre Infinity Optical centre Same size P.70

61 FF’ I Image Real Inverted Diminished v = f P.71 Q1

62 I Enlarged O FF’ 2F 2F’ v > 2f Image Real Inverted P.71 Q1

63 P.71 Diverging Bends towards normal

64 FF’ I O Same side & between C & F VirtualUpright Image Diminished P.72

65

66

67 F Object Image Optical centre Infinity Optical centre Virtual ErectSame side Diminished Same size P.72

68 P.72 Q1 Diverging Light can pass through it Must be Lens

69 P.72 Q2 Concave Lens Virtual Image XX Only 2 rays from tip X

70 P.73 Q3 Erect Diminished (1 mark) Concave Lens (1 mark)

71 FF’ I O Same side & between C & F VirtualUpright Image Diminished P.73 Q3

72 Experiment : Image formation using light rays P.73

73 Ray diagram Position of image Size of image Nature of image P.73

74 I O FF’2F2F’ P.73

75 I O FF’2F2F’ P.73

76 FF’ O I Scale P.73

77 P.74 Q1

78 I Same sizev = 2f Image Real Inverted f= 15 cm

79 I hihi O hoho u v P.74 Magnification

80 I O FF’ 2F2F 2F’ P.74

81 FF’ I O P.74

82 u v u = v 2f f>0, convex lens f<0, concave lens v>0, real image v<0, virtual image

83 P.75 Q1 Real Image (1) is correct (2) is correct (3) is incorrect Only inverted

84 Real & inverted image R R P.75 Q1

85 P.75 Q2 Convex lens Real image, on the other side J

86 P.75 Q2 36 cm m=v/u = 36/18 = 2

87 P.75 Q2 24 cm u=v=2 f f = 12 cm

88 P.76 Q2

89 Magnifying glass It cannot. The image is virtual.

90 P.76 Q3

91 I u =30 cm v =7.5 cm m =v / u = 7.5 / 30 = 0.25

92 P.76 Q3 Convex lens will form inverted, real image when the object is placed beyond the focal length of the lens. The visitor cannot be easily identified.

93 P.77 Q3

94

95 P.77 Q3(c)(i) I Image is outside the shaded region

96 P.77 Q3

97 P.77 Q3(c)(ii) I f=5.5 cm I

98 P.78 Q2 Real Image Virtual Image

99 P.78 Q3 Can you see Virtual Image? Yes Camera acts as your eyes False This is real image Image should be formed on film True

100 P.79 Q4 Real Image

101 Enlarged, erect & virtual image Magnifying glass is convex lens P.79

102

103 I O FF’ 2F 2F’ The magnification is maximum when the object is close to the focus P.79

104 P.79 Q2 Converge light ray Convex lens Concave mirror (out of syllabus) Convex lens

105 P.79 Q3 out of syllabus

106 P.80 Q4 XConvex lens Virtual, under the lens X u < f to have magnified virtual image X D) v>u to have magnified virtual image X I O FF’ 2F2F 2F’

107 P.80 Q5 TrueFalse

108 P.80 Q6 FF’ I X Yes

109 P.80 Q8 X Magnified image by convex lens Yes

110 P.80 Q11 Yes Magnifying glass Yes


Download ppt "Convex lens Thicker central part P.66 Concave lens Thinner central part P.66."

Similar presentations


Ads by Google