Presentation is loading. Please wait.

Presentation is loading. Please wait.

Investigation of Nonlinear DPSK Fading Due to Cross-Polarization Modulation Marcus Winter Klaus Petermann Hochfrequenztechnik-Photonik TECHNISCHE UNIVERSITÄT.

Similar presentations


Presentation on theme: "Investigation of Nonlinear DPSK Fading Due to Cross-Polarization Modulation Marcus Winter Klaus Petermann Hochfrequenztechnik-Photonik TECHNISCHE UNIVERSITÄT."— Presentation transcript:

1 Investigation of Nonlinear DPSK Fading Due to Cross-Polarization Modulation Marcus Winter Klaus Petermann Hochfrequenztechnik-Photonik TECHNISCHE UNIVERSITÄT BERLIN Dario Setti http://www.marcuswinter.de/publications/ofc2009

2 TECHNISCHE UNIVERSITÄT BERLIN Fachgebiet Hochfrequenztechnik what are we talking about?

3 TECHNISCHE UNIVERSITÄT BERLIN Fachgebiet Hochfrequenztechnik a typical system

4 TECHNISCHE UNIVERSITÄT BERLIN Fachgebiet Hochfrequenztechnik selective upgrade of an existing 10 Gbps NRZ infrastructure with DPSK channels (10 / 40 Gbps) worst case for interchannel nonlinearities

5 TECHNISCHE UNIVERSITÄT BERLIN Fachgebiet Hochfrequenztechnik cross-polarization modulation (XPolM)

6 TECHNISCHE UNIVERSITÄT BERLIN Fachgebiet Hochfrequenztechnik XPolM is very similar to XPM nonlinear variation of the birefringencerefractive index proportional to sum of interfering channel Stokes vectorspowers results in the modulation of signal polarizationphase

7 TECHNISCHE UNIVERSITÄT BERLIN Fachgebiet Hochfrequenztechnik nonlinear polarization effects only XPolM demonstration / quantification setup

8 TECHNISCHE UNIVERSITÄT BERLIN Fachgebiet Hochfrequenztechnik polarization states (SOPs) of the CW probe at the transmitter 500 × 256 bits

9 TECHNISCHE UNIVERSITÄT BERLIN Fachgebiet Hochfrequenztechnik polarization states (SOPs) of the CW probe at a receiver 500 × 256 bits

10 TECHNISCHE UNIVERSITÄT BERLIN Fachgebiet Hochfrequenztechnik DPSK fading

11 TECHNISCHE UNIVERSITÄT BERLIN Fachgebiet Hochfrequenztechnik the balanced detector output current depends on the relative polarization between the interfering bits I  cos(Δθ/2) (Δθ is the angle between Stokes vectors of the two symbols)

12 TECHNISCHE UNIVERSITÄT BERLIN Fachgebiet Hochfrequenztechnik exemplary SOP evolution over 100 bits @ 10 Gbps adjacent bits are not completely uncorrelated the angle Δθ remains relatively small

13 TECHNISCHE UNIVERSITÄT BERLIN Fachgebiet Hochfrequenztechnik how can we quantify fading?

14 TECHNISCHE UNIVERSITÄT BERLIN Fachgebiet Hochfrequenztechnik the autocorrelation function (ACF) of the time series of SOPs ACF(T) = E [ Ŝ(t) · Ŝ(t-T) ] = E [ cos Δθ(T) ] is an average function of the angle Δθ between SOPs with time interval T

15 TECHNISCHE UNIVERSITÄT BERLIN Fachgebiet Hochfrequenztechnik every iteration of a fixed system (with random initial parameters) will yield a different set of output SOPs these result in individual sample ACF(T) the ensemble of all possible initial parameters is described by  ACF(T) 

16 TECHNISCHE UNIVERSITÄT BERLIN Fachgebiet Hochfrequenztechnik average signal fading: ~1.5% BUT: probability for 15% fading is approximately 10 -4

17 TECHNISCHE UNIVERSITÄT BERLIN Fachgebiet Hochfrequenztechnik systems with high symbol rates are less affected than low-rate systems T is smaller ACF(T) is monotonously decreasing

18 TECHNISCHE UNIVERSITÄT BERLIN Fachgebiet Hochfrequenztechnik systems with residual dispersion per span (RDPS) have higher ACFs than those without (at equal DOP) RDPS correlates the distortions in neighboring bits typical 10G systems have significant RDPS to suppress XPM

19 TECHNISCHE UNIVERSITÄT BERLIN Fachgebiet Hochfrequenztechnik SOP evolution over 100 bits @ 10 Gbps (systems with equal average DOP) no RDPS 25% RDPS there is less “motion” with RDPS

20 TECHNISCHE UNIVERSITÄT BERLIN Fachgebiet Hochfrequenztechnik what is the (relative) impact on systems?

21 TECHNISCHE UNIVERSITÄT BERLIN Fachgebiet Hochfrequenztechnik CW probe + 10 × 10 Gbps NRZ interferers  determine the ROSNR of the CW probe as if it were a 10 Gbps DPSK signal (all zeros)

22 TECHNISCHE UNIVERSITÄT BERLIN Fachgebiet Hochfrequenztechnik by using an all-zero DPSK data sequence, we minimize any influence of GVD, PMD, SPM on the result by correlating the sample ACF(T) and the sample ROSNR penalty for each iteration, we can extrapolate the contribution of XPolM to the interchannel penalty

23 TECHNISCHE UNIVERSITÄT BERLIN Fachgebiet Hochfrequenztechnik ROSNR penalty (dispersion map 1) 25% RDPS, 0.5 ps/km 1/2, P ch = 4 mW no statistical correlation  penalty (distribution) is XPM-related

24 TECHNISCHE UNIVERSITÄT BERLIN Fachgebiet Hochfrequenztechnik NLT for XPM penalty ~ 1dB is only 1 mW also no statistical correlation ROSNR penalty (dispersion map 2) no RDPS, 0.1 ps/km 1/2, P ch = 1 mW

25 TECHNISCHE UNIVERSITÄT BERLIN Fachgebiet Hochfrequenztechnik XPolM should not be ignored completely

26 TECHNISCHE UNIVERSITÄT BERLIN Fachgebiet Hochfrequenztechnik ROSNR penalty in a PolDM subchannel Winter et al., LEOS Annual Meeting 2008, WH3

27 TECHNISCHE UNIVERSITÄT BERLIN Fachgebiet Hochfrequenztechnik summary

28 TECHNISCHE UNIVERSITÄT BERLIN Fachgebiet Hochfrequenztechnik XPolM induces polarization changes between adjacent bits such polarization misalignment leads to fading of the detected DPSK signal the effect is very small compared to XPM distortions scalar simulations are sufficient (regarding nonlinear DPSK fading)


Download ppt "Investigation of Nonlinear DPSK Fading Due to Cross-Polarization Modulation Marcus Winter Klaus Petermann Hochfrequenztechnik-Photonik TECHNISCHE UNIVERSITÄT."

Similar presentations


Ads by Google