Presentation is loading. Please wait.

Presentation is loading. Please wait.

The CMS Silicon Strip Tracker Project Tracker PRR-01 GR June 2000.

Similar presentations


Presentation on theme: "The CMS Silicon Strip Tracker Project Tracker PRR-01 GR June 2000."— Presentation transcript:

1 The CMS Silicon Strip Tracker Project Tracker PRR-01 GR June 2000

2 GR TRAK_PRR-01 June 2000 2 Scope of the Track_PRR-01 (1) 1) Present the general scheme of the CMS Tracker, including the read out scheme, putting the silicon sensors in perspective. 2) Present in detail the silicon sensors and electronics modules for which approval is sought. The transition to the bulk procurement shall be particularly addressed. 3) Present the specifications and the manufacturing plan of the silicon sensors including Quality Plan and Control procedures. Scheduling, organization, integration and material safety questions related to the silicon sensor project shall be addressed.

3 GR TRAK_PRR-01 June 2000 3 Scope of the Track_PRR-01 (2) Overview of the project layout, organization and schedule: GR mechanics and cooling : HP readout scheme : GH Silicon sensor: definition and specification : MM quality control & assurance : GMB Detector : module design : BG FE Hybrid : JDB FE electronics : GH module assembly : EF

4 GR TRAK_PRR-01 June 2000 4 Goal of the Track_PRR-01 Approve the procurement of sensors to equip 200 detectors of the SST of final design. These detectors will be used to start up the production chain before the production. They will be equipped with final FE electronics and will be used for system tests to validate the read-out chain before the massive procurement of the FE electronics.

5 GR TRAK_PRR-01 June 2000 5 Layout of the talk Requirements and design considerations3 Layout4 Performance5 Mechanical Structures4 Collaboration and budget4 Structure of the project3 Organization of the project4 Construction of detectors4 Schedule5 Conclusions2

6 GR TRAK_PRR-01 June 2000 6 Requirements CMS Technical proposal “The design goal of the central tracking system is to reconstruct isolated high pt tracks with an efficiency of better than 95% and high pt tracks within jets with an efficiency better than 90%..” “The momentum resolution required for isolated charged leptons in the central rapidity region is  pt/pt = 0.1 pt (pt in TeV)..” This momentum resolution allows to reconstruct Z  +  - with  m z < 2 GeV up to P z ~ 500 GeV

7 GR TRAK_PRR-01 June 2000 7 Design Considerations (1) Twelve layers with digital (pitch/  12) spatial resolution give a momentum resolution of in the available radial space. Primary charged particle densities integrating 20 minimum bias events SST  Occ =  x pitch x length Low (1%) occupancy requires maximum strip length of 10cm at 20 cm radius. This requirement is relaxed at the outer radii.

8 GR TRAK_PRR-01 June 2000 8 Design considerations (2) Fast detector response (< 25 ns) to reduce pile- up effect Capability to cope with the CMS trigger requirements Resistance to high radiation dose Minimize the amount of material before the calorimeters

9 GR TRAK_PRR-01 June 2000 9 Layout (1) The CMS SST is made with silicon detectors of two different thickness: 320  m in the inner region (r< 600 mm) and 500  m in the outer region. These are single side detectors made of one (thin) or two (thick) daisy-chained silicon sensors from 6” wafers. They are read out with APV25 in deep sub-micron technology. There are 128 channels/APV. Blue lines indicate “double” layers where two detectors are mounted back-to-back. The second detector is mounted with a stereo angle of 0.1.

10 GR TRAK_PRR-01 June 2000 10 Layout (2) N of points in the SST: Total, double, double inner, double outer. Strip length ranges from 10cm in the inner layers to 20 cm in the outer layers. Pitch ranges from 80  m in the inner layers to 200  m in the outer layers

11 GR TRAK_PRR-01 June 2000 11 Layout (3) Tracker Numbers 6,136 Thin wafers 19,632 Thick wafers 6,136 Thin detectors (1 sensor) 9,816Thick detectors (2 sensors) 3112 + 1512 Thin modules (ss +ds) 4776 + 2520 Thick modules (ss +ds) 10,016,768 strips  electronics channels 78,256 APV chips 26,000,000 Bonds 470 m 2 of silicon wafers 223 m 2 of silicon sensors (175 m 2 + 48 m 2 )

12 GR TRAK_PRR-01 June 2000 12 Layout (4) IB1 and IB2 can also be made with 2 sensors from 4” wafer

13 GR TRAK_PRR-01 June 2000 13 Performance (1) Radiation length of the SST as a function of rapidity. Material outside the tracker volume not included Present layout Layout used in the full simulation

14 GR TRAK_PRR-01 June 2000 14 Performance(2) Present Layout Layout used in the full simulation The present layout has one extra point in the region 1<  <2

15 GR TRAK_PRR-01 June 2000 15 Performance (3) Momentum resolution 10% at 1 Tev MS up to 30 GeV Sagitta at 1 TeV  180  m

16 GR TRAK_PRR-01 June 2000 16 Performance (4) Occupancy

17 GR TRAK_PRR-01 June 2000 17 Performance(5) Efficiency Efficiency(%) in jets:  < 0.7 1.2<  <1.6 ghost fraction(%) p t >2 Gev/c At least 6 reg.hits 93.7 +/- 0.6 91.6 +/- 0.6 0.26 +/- 0.09 0.10 +/- 0.07 At least 8 reg.hits 88.3 +/- 0.9 86.8 +/- 0.8 0.06 +/- 0.06 0.10+/-0.07 main loss due to interaction of particle in the tracker material

18 GR TRAK_PRR-01 June 2000 18 Outer barrel structure

19 GR TRAK_PRR-01 June 2000 19 Inner barrel structure

20 GR TRAK_PRR-01 June 2000 20 Forward Endcap structure

21 GR TRAK_PRR-01 June 2000 21 Forward Endcap Structure

22 GR TRAK_PRR-01 June 2000 22 Status of the project We have finished the R&D phase and we are now moving to the construction phase using all the experience gained in the last years: The layout has been defined and frozen The sensor specifications are ready and we are now preparing the Tender The drawings of the masks are being prepared The drawings of the detectors are being prepared The FE electronics has been designed, prototypes have been successfully tested and we have submitted the last engineering run The mechanical structures are being designed after the definition of the layout

23 GR TRAK_PRR-01 June 2000 23 * * * * * THE SST Collaboration Vienna Brussels UVB, Brussels ULB, Antwerpen, Louvain, Mons Helsinki, Oulu Mulhouse, Lyon, Strasbourg Aachen I, Aachen III, Karlsruhe Bari, Catania, Firenze, Padova, Perugia, Pisa, Torino ETH Zurich Brunel, Imperial College, Rutherford Fermilab, Kansas, Purdue, Rochester, Northwestern CERN * = C.E. Consortium

24 GR TRAK_PRR-01 June 2000 24 SST Cost (1) Cost of the SST (deliverable): 69.1 MCHF including 10% contingency (pixel detector excluded) Revised by LHCC in May/00 Funds presently available 62.2 MCHF. USA has a contribution of 2.5 M$ in labor.

25 GR TRAK_PRR-01 June 2000 25 SST cost (2) More than 40% of the cost is in the modules. About 75% of the cost of the modules is the cost of the sensors.

26 GR TRAK_PRR-01 June 2000 26 Sharing of construction responsibilities

27 GR TRAK_PRR-01 June 2000 27 EDMS structure of the Tracker project

28 GR TRAK_PRR-01 June 2000 28 Example: Forward Endcap PBS

29 GR TRAK_PRR-01 June 2000 29 Example: Forward Endcap WBS

30 GR TRAK_PRR-01 June 2000 30 Organization (1) Management Tracker steering committee. Weekly meeting (VC) with minutes and action list 4 Tracker weeks and 4 CMS weeks in the year with Plenary, Institution board, Finance Board meetings. Technical Tracker Project Office Working groups on: Sensor, Gantry, Bonding, Frames, Hybrids, Test of detectors, Electronics system

31 GR TRAK_PRR-01 June 2000 31 Organization (2) Tracker steering committee Rino Castaldi, Project Manager (chair) Gigi Rolandi, deputy project manager Ariella Cattai, Technical Coordinator Marcello Mannelli, Resource manager Geoff Hall, Electronics Roland Horisberger, Pixel vertex detector Demetrios Pandoulas, CE consortium Jean Marie Brom, CE consortium Ettore Focardi, INFN Guido Tonelli, INFN Joe Incandela, USA Patrice Siegrist, Cern

32 GR TRAK_PRR-01 June 2000 32 Organization (3) Tracker Project Office Technical Coordinator: P. Siegrist --> A. Cattai Planning Officer H. J. Simonis Safety officerM. Huhtinen CDD EDMS coordinatorP. Petagna Tracker EngineerH. Postema Subproject coordinators…. Still to be restructured after the redefinition of the Tracker Project in December 1999

33 GR TRAK_PRR-01 June 2000 33 Organization(4) Working groups Sensor G.M. Bilei http://home.cern.ch/~angarano/sensors/main.html GantryG. Fiore http://home.cern.ch/~fiore/gantry/gantry.html Bonding A. Honma http://honma.home.cern.ch/honma/BondingWG/bondhome.html Frames C. Vandervelde http://web.iihe.ac.be/frames/ Hybrids U. Goerlach Test of detectorsE. Focardi http://cmsdoc.cern.ch/~efocardi/moduletest/welcome.html Electronics systemG. Hall http://pcvlsi5.cern.ch:80/CMSTControl/ http://www.cern.ch/CERN/Divisions/ECP/CME/OpticalLinks/ sensors frame gantry bonding hybrid

34 GR TRAK_PRR-01 June 2000 34 Construction of detectors (1) We will construct 17,500 detectors (10% spares included) in 2.5 years. This corresponds to an average capacity of 35 detectors/day There are 6 centers with robot assembly and 12 centers with fast bonding machines Assuming 6 detectors/h mounted on the robot and 2 detectors/h bonded we have a capacity to mount 288 detectors/day to bond 192 detectors/day

35 GR TRAK_PRR-01 June 2000 35 Construction of detectors(2) Robot mounting Working group responsibility to ensure common: hardware, calibration, methods Bari : G. Fiore Catania: C. Tuve’ Brussels:L.Van Lancker Lyon:S. Tissot Padova:A. Kaminsky Perugia:M. Biasini USA:L. Spiegel Pilot Project (Cern): Reproducibility 2  m Throughput: 8 modules/h

36 GR TRAK_PRR-01 June 2000 36 Construction of detectors(3) Bonding More than 14 bonding machines in the Institutes of the Collaboration. Available typically 80-100% for CMS Tracker during the production period with trained manpower. Throughput already achieved in other projects between 5 and 25 detectors/day. Working group responsibility to ensure common: methods and tests. Aachen: Wolfgang Braunschweig Bari: Paolo Tempesta CERN: Alan Honma Fermilab: Joel Goldstein Florence: Enrico Scarlini Karlruhe: Frank Roederer Padova: Igor Stavitski Pisa: Filippo Bosi Strasbourg: Francois Didierjean Torino: Barbara Pini Vienna: Rudolf Wedenig Zurich: Klaus Freudenreich

37 GR TRAK_PRR-01 June 2000 37 Construction of detectors(4) Burn in of detectors Detectors are mounted on pre-cabled mechanical structures before burn in: Outer barrel rods (300+388) with (12, 6) detectors Done in Fermilab Petals (144 + 144) with (<=28, <=23 ) detectors 50 petals each in: Aachen, Karlsruhe, Lyon, Strasbourg/Mouluse, Brussels/Antwerp, Louvain The inner structures are smaller and then somewhat less modular: Inner Endcap disks (6) with 136 detectors Half shells (4+4+4+4) with ( 168, 228, 138, 168) Done by INFN

38 GR TRAK_PRR-01 June 2000 38 Schedule (0) Important dates Full list of milestones (level 1-2-3) can be found at: http://cmsdoc.cern.ch/Tracker/managment/LHCC/Milestone_list.doc PRR15/6/00 Tender for sensors3/7/00 EDR20/11/00 Signature of sensor contract15/2/01 Test of system aspects with pre-production modules15/3/01 Tender mechanical structures 15/1/01 First production module ready 30/9/01 First rod ready21/1/02 First petal ready15/4/02 Mechanical structures ready 16/9/02 Delivery of TIB to CERN for Final test2/2/04 Delivery of End-Cap to CERN27/2/04 Delivery of TOB to the Tracker15/4/04 TRACKER DETECTOR INSTALLED9/5/05

39 GR TRAK_PRR-01 June 2000 39 Schedule (1) Tracker installation at CERN Compatible with CMS schedule v. 28 Tracker is lowered into the pit 16/12/2004 fw shift of this date is used as contingency TOB commissioning ends by 15/4/04 TIB installed by June 2004 TIE installed by August 2004 TFE installed by October 2004

40 GR TRAK_PRR-01 June 2000 40 Schedule (2) Detectors production Detector production must end by Q1 2004 Sensors delivery time is 2.5 years Detector production must start in Q3 2001

41 GR TRAK_PRR-01 June 2000 41 Schedule (3) Preparation of production Can we start detector production in Q3 2001 ? Tender for sensors 3/7/2000 - Draft already existing. Draft Technical specification existing. Start delivery June 2001 Sensor testing centers (some already ready) all centers ready by 1/5/01 Gantry centers: commissioning 1st center 9/00 all centers ready by 15/3/01 Bonding centers (partially ready) all centers ready by 4/6/01 FE Hybrids Production ceramic proto by 7/00 Final production starts 1/3/01 FE electronics Components tested, System test on prototipes done in 05/00. Detectors+FE Hybrid+FE electronics Need final system test foreseen in May/01 with final design modules mounted on structures and read out by final electronics

42 GR TRAK_PRR-01 June 2000 42 Schedule(4) procurement of FE electronics After 4 wafers production and evaluation in Q3/00 In Q4/00 we will submit a 50 wafers order (10% of total production) before the system tests. This order will be sufficient for producing modules until Q4 2001 included.

43 GR TRAK_PRR-01 June 2000 43 Schedule (5) Milestone 200 We foresee the procurement of sensors to equip 200 detectors (80 TOB, 40 TIB, 80 W6 of TFE). These detectors will be ordered in July 2000 (procurement procedure already started) Equipped with frames of the final design (procurement procedure already started) Equipped with (ceramic) hybrids of the final design (design in preparation) Equipped with ASICS of the final design (from the last engineering run already submitted) These detectors can be used in the Tracker

44 GR TRAK_PRR-01 June 2000 44 Why to produce 200 detectors Procure a sufficient number of detectors of the final design for the system tests before launching the big orders of electronics Exercise the production procedure before the start of the production to identify and correct possible bottle-necks Motivate the production and testing centers to an early preparation 200 detectors are 1.3% of the total number of detectors. Their projected cost is about 1.3% of the cost of the whole tracker.

45 GR TRAK_PRR-01 June 2000 45 Conclusions As you will also see from the following presentations: We believe we have designed a robust detector for tracking at LHC We have an aggressive plan for the production of 220 m 2 of silicon detectors and we believe we can produce them in 2.5 years We have to start very soon the procurement of 200 detectors for starting/validating the production line and for system tests. We ask green light for this procurement


Download ppt "The CMS Silicon Strip Tracker Project Tracker PRR-01 GR June 2000."

Similar presentations


Ads by Google