Presentation is loading. Please wait.

Presentation is loading. Please wait.

What do we know about the identity of CR sources? Boaz Katz, Kfir Blum Eli Waxman Weizmann Institute, ISRAEL.

Similar presentations


Presentation on theme: "What do we know about the identity of CR sources? Boaz Katz, Kfir Blum Eli Waxman Weizmann Institute, ISRAEL."— Presentation transcript:

1 What do we know about the identity of CR sources? Boaz Katz, Kfir Blum Eli Waxman Weizmann Institute, ISRAEL

2 The cosmic-ray spectrum & Composition Cosmic-ray E [GeV] log [dJ/dE] 1 10 6 10 E -2.7 E -3 Heavy Nuclei Protons Light Nuclei? Galactic X-Galactic (?) [Blandford & Eichler, Phys. Rep. 87; Axford, ApJS 94; Nagano & Watson, Rev. Mod. Phys. 00] Source: Supernovae(?) Source? Lighter

3 Intra-cluster CRs Observed in radio, HXR Will not be discussed here See D. Kushnir ’ s talk: [arXiv:0903.2271, 0903.2275, 0905.1950] * Likely origin- Accretion shocks * Predictions for Fermi, TeV (HESS, MAGIC)

4 Galactic CR sources: Constraints Max  >~10 15 eV Energy production rate L G,CR ~(A disk h CR )U CR /t CR * U CR ~1 eV/cm 3, * Propagation: 2 nd -ary (& primary) composition  L G,CR ~cA disk U CR (  disk /  sec )~10 49.5 erg/100yr [Blandford & Eichler, Phys. Rep. 87; Axford, ApJS 94]

5 Galactic CR sources: SNe? Motivation for SNe as sources: * L G,CR ~10 -1.5 L G,SN * Max  ~10 15 eV * e - acceleration to 10 15 eV from X emission TeV photons from SNRs (RXJ1713.7-3946,RXJ0852.0-4622) * Claim: must be due to pp pion production  Confirms CR ion production [e.g. Koyama et al. 95] [e.g. Aharonian et al. 04--07]

6 TeV must be due to e - IC pp   origin in contradiction with radio, thermal-X (non detection of thermal X  n<~0.1/cm 3 ): TeV consistent with e - IC, including “ cutoffs ” : Claims RE e - IC inconsistency: Detailed spectral shape near h c, where theoretical predictions are highly uncertain [Katz & Waxman 07]

7 SNR TeV lessons Search at high n SNRs: Strong Thermal X, weak non-Thermal Difficult to prove pp based on EM obs. Highly simplified, phenomenological models (and plenty of room for complications: inhomogeneous plasma, particle spectra … ) [Katz & Waxman 07]

8 PAMELA: New e+ sources? Apply  anti-p, e + consistent with 2 nd ary origin Radiative e + losses- depend on propagation in Galaxy (poorly understood) * At 20GeV: f rad ~0.3~f 10 Be * Above 20GeV: If PAMELA correct  slightly rising f rad (  ) [Katz, Blum & Waxman 09]

9 What do we know about >10 19 eV CRs? Max  : L B >10 12 (  2 /  ) (  /Z 10 20 eV) 2 L sun (see Dermer ’ s talk) Composition [Waxman 95, 04]

10 Composition clues HiRes 2005

11 Westerhoff (Auger) 2009

12 What do we know about >10 19 eV CRs? Max  : L B >10 12 (  2 /  ) (  /Z 10 20 eV) 2 L sun Composition: HiRes – protons, Auger- becoming heavier @ 3x10 19 eV? !!Uncertain interaction cross sections Energy production rate: - L B >10 12 L sun & R L =  /eB=40  p,20 kpc  Likely X-Galactic

13 [Waxman 1995; Bahcall & Waxman 03] [Katz & Waxman 09]  2 (dN/d  )=  2 (dQ/d  ) t eff. (t eff. : p +  CMB  N +  Assume: p, dQ/d  ~(1+z) m  -  >10 19.3 eV: consistent with protons,  2 (dQ/d  ) ~10 43.7 erg/Mpc 3 yr + GZK  2 (dQ/d  ) ~Const.: Consistent with shock acceleration [Reviews: Blandford & Eichler 87; Waxman 06 cf. Lemoine & Revenu 06] Flux & Spectrum ct eff [Mpc] GZK (CMB) suppression log(  2 dQ/d  ) [erg/Mpc 2 yr]

14 G-XG Transition at 10 18 eV? Fine tuning Inconsistent spectrum [Katz & Waxman 09]

15 What do we know about >10 19 eV CRs? Max  : L B >10 12 (  2 /  ) (  /Z 10 20 eV) 2 L sun Composition HiRes – protons, Auger- becoming heavier Uncertain interaction cross sections Energy production rate - L B >10 12 L sun & R L =  /eB=40  p,20 kpc  Likely X-Galactic - Consistent with protons,  2 (dQ/d  ) ~10 43.7 erg/Mpc 3 yr + GZK

16 UHE CR sources Constraints: - L>10 12 (  2 /  ) L sun -  2 (dQ/d  ) ~10 43.7 erg/Mpc 3 yr - d(10 20 eV)<d GZK ~100Mpc !! No L>10 12 L sun at d<d GZK  Transient Sources Gamma-ray Bursts (GRBs)  ~ 10 2.5, L  ~ 10 19 L Sun  L/  2 >10 12 L sun (dn/dVdt)*E~10 -9.5 /Mpc 3 yr *10 53.5 erg ~10 44 erg/Mpc 3 yr Transient:  T  ~10s <<  T p  ~10 5 yr Active Galactic Nuclei (AGN, Steady):  ~ 10 1  L>10 14 L Sun = few brightest !! Non at d<d GZK  Invoke: * “ Dark ” (proton only) AGN * L~ 10 14 L Sun,  t~1month flares (from stellar disruptions) [Blandford 76; Lovelace 76] [Waxman 95, Vietri 95, Milgrom & Usov 95] [Waxman 95] [Boldt & Loewenstein 00] [Farrar & Gruzinov 08]

17 Anisotropy Cross-correlation signal: Inconsistent with isotropy @ 98% CL (~1.5  ) Consistent with LSS If anisotropy signal real & no anisotropy at 60EeV/(Z~10)  primaries must be protons See M. Lemoine ’ s talk [arXiv:0907.1354] Biased (  source ~  gal for  gal >  gal ) [Kashti & Waxman 08]

18 The GRB “ GZK sphere ” LSS filaments: D~1Mpc, f V ~0.1, n~10 -6 cm -3, T~0.1keV  B =(B 2 /8  nT~0.01 (B~0.01  G), B ~10kpc Prediction: p  D B [Waxman 95; Miralda-Escude & Waxman 96, Waxman 04]

19 Summary Galactic  <10 15 eV (<10 19 eV) - L G,CR ~10 -1.5 L G,SN & Max  ~10 15 eV (10 19 eV)  suggest SNR (trans-rel. SN) sources - TeV from low n, non-thermal X SNR: e - IC - Search for pp in high n, strong thermal X SNR pp:IC[@1GeV]~3 (n/1cm 3 ) * Anti-p, e + data consistent with 2 nd ary origin Prediction: e + /(e + + e-)<0.2+-0.1 up to ~300GeV PAMELA  slightly rising f rad (  ) [constrain CR prop. Models] X-Galactic  >10 19 eV - Likely protons,  2 (dQ/d  ) ~10 43.7 erg/Mpc 3 yr, L B >10 12 L sun  suggest: GRBs [AGN flares?] - Anisotropy constrains primary composition Difficult to uniquely identify sources via EM observations  Search for HE ’ s

20 Back up slides

21 X-ray filaments Claim: X-ray filaments require B>100  G, much larger than required for IC explanation of TeV emission (B~10  G). Claim based on the assumption: Filaments due to e - cooling (vs, e.g., B variations). * No independent support to this assumption; * X-ray & RADIO filaments (Tycho, SN2006) inconsistent with this assumption.

22 What is the e + excess claim based on? On assumptions not supported by data/theory * primary e - & p produced with the same spectrum, and e - and e+ suffer same f rad  e + /e - ~  sec ~  -0.5 Or * detailed assumptions RE CR propagation, e.g. isotropic diffusion, D~  , within an  -independent box  f rad ~  (  -1)/2 If PAMELA correct, these assumptions are wrong

23 (Correct) detailed CR propagation models must agree with simple, analytic results derived from  sec Example: Diffusion models with {D~K 0  , box height L} reproduce data for parameter combinations shown in fig. [Maurin et al. 01] Trivial explanation: [Katz, Blum & Waxman 09] Require  sec (  =35GeV) to agree with the value inferred from B/C  sec =[3.2,3.45,3.9] g/cm 2 [green, blue, red]

24 The 10 20 eV challenge R B v v 2R  t RF =R/  c) l =R/   22 22 [Waxman 95, 04, Norman et al. 95]

25 Anisotropy clues: I Galaxy density integrated to 75Mpc CR intensity map (  source ~  gal ) [Waxman, Fisher & Piran 1997] Auger collaboration: Correlation with low-luminosity AGN @ 99%  AGN? AGN trace LSS  Correlation with large-scale structure? Unfortunately… Unclear.

26

27 GRB proton/electron acceleration Electrons MeV  ’ s:   <1: e - (  ) spectrum: e - (  )  energy production [Waxman 95, 04] Afterglow, R GRB ~SFR Protons Acceleration/expansion: Synchrotron losses: Proton spectrum: p energy production: 52

28 GRB Model Predictions [Miralda-Escude & Waxman 96]


Download ppt "What do we know about the identity of CR sources? Boaz Katz, Kfir Blum Eli Waxman Weizmann Institute, ISRAEL."

Similar presentations


Ads by Google