Presentation is loading. Please wait.

Presentation is loading. Please wait.

Exotics at & Stephen L. Olsen Seoul National University 447 th Wilhelm & Else Heraeus Seminar: Charmed Exotics Aug 10-12, 2009 Bad Honnef Germany & CDF.

Similar presentations


Presentation on theme: "Exotics at & Stephen L. Olsen Seoul National University 447 th Wilhelm & Else Heraeus Seminar: Charmed Exotics Aug 10-12, 2009 Bad Honnef Germany & CDF."— Presentation transcript:

1 Exotics at & Stephen L. Olsen Seoul National University 447 th Wilhelm & Else Heraeus Seminar: Charmed Exotics Aug 10-12, 2009 Bad Honnef Germany & CDF

2 cc production at B factories division of labor

3 Outline X(3872) States near 3940 MeV Z(4430) and Z 1 (4050) & Z 2 (4250 )

4 X(3872)      J/  in Belle recent results diquark-diquark prediction:  M=8±3 MeV Maiani et al PRD71, 014028 arXiv:0809.1224 605 fb -1

5 X(3872)      J/  in BaBar recent results B 0  X(3872)K 0 S 2.3  413 fb -1 m J/ψπ+π- (GeV/c 2 ) B +  X(3872)K + 8.6  413 fb -1 m J/ψπ+π- (GeV/c 2 ) B A B AR : PRD 77,111101 (2008) [413 fb -1 ] B A B AR = (2.7 ± 1.6 ± 0.4) MeV = 0.41 ± 0.24 ± 0.05

6 X(3872)      J/  in CDF recent results arXiv:0906.5218 ~6000 events! M X = 3871.61 ± 0.16 ± 0.19 MeV  M X < 3.6 MeV @ 95% CL Fits for 2 nearby states

7 M(X(3872))     J/  mode only new CDF meas. new Belle meas. M D0 + M D*0. = 3871.46 ± 0.19 MeV  m = -0.35 ± 0.41 MeV

8 No sign of a mass doublet ala Maiani et al M X(3872) in     J/  mode more precise than M D0 + M D*0 ± 190keV± 360keV BES III can improve on this

9 The on-going saga of X 3872  D* 0 D 0 414fb -1 D 0 D 0  0 Belle 2006 X 3872  D 0 D 0  0 Fit with truncated BW BaBar 2006 X 3872  D 0 D* 0 (  0 D 0,  D 0 ) Fit with truncated BW Is this the higher mass partner state predicted by Maiani et al?

10 Belle in 2009 605fb -1 D 0 D* 0 (D 0  605fb -1 D 0 D* 0 (D 0  0 ) Fit with a phase-space modulated BW E signal = 50 +15 evts Signif.=7.9  -11

11 Flatte formula fits well also ala Hanhart et al, PRD76, 034007 (2007) g=0.3. f  =0.007  both fixed E f = -14.9 ± 2.0 MeV E signal = 63.5 ±1 2.0 evts Signif.=8.8 

12 Braaten 2009 Still wrong guys!!! arXiv: 0907.3167 --- & the next speaker  J/  D0D00D0D00 D 0 D* 0 (D 0  0 )

13 Braaten’s fits

14 theorists here should agree on the proper form & then experimenters should use it in a proper unbinned fit

15 X(3872)   J/  &  ’ from BaBar X(3872)  J/  X(3872)   S  BABAR PRL 102, 132001 (2009) 3.0  3.5  BF(B +  X 3872 K + )×(X 3872  J/  ) =(2.8 ± 0.8 ± 0.2) × 10 -6 BF(B +  X 3872 K + )×(X 3872  ’  ) =(9.5 ± 2.7 ± 0.9) × 10 -6 C-parity = +1 J PC = 2 -+ disfavored  multipole suppression Bf(X 3872   ’) > Bf(X 3872   J/  )  bad for molecules

16 B  K  X(3872) from Belle arXiv:0809.1224 605 fb -1 ~90 events Very weak K*(890) M(K  ) M(  J/  ) Backgrounds from J/  sidebands Bf(B  J/  K* 0 ) Bf(B  J/  K  NR ) ~4

17 DD* molecular models for the X(3872) attribute its production & decays  charmonium to an admixture of  c1 ’ in the wave fcn. But B  K  X(3872) is very different from B  K  charmonium BaBar PRD 71 032005 Belle arXiv 0809.0124 Belle PRD 74 072004 K  ’ K  J/  K  c1 K  c Belle F.Fang Thesis Belle PRD 74 072004 K  X 3872 M(K  )

18 States near 3940 MeV

19 The states near 3940 MeV -circa 2005- M = 3942 +7 ± 6 MeV  tot = 37 +26 ±12 MeV Nsig =52 +24 ± 11evts -6 -15 -16 PRL 100, 202001 e + e -  J/  DD* M(DD*) M≈3940 ± 11 MeV  ≈ 92 ± 24 MeV PRL94, 182002 (2005) M(  J/  ) B  K  J/  M = 3929±5±2 MeV  tot = 29±10±2 MeV Nsig =64 ± 18evts   DD M(DD) PRL 96, 082003 Z(3930) Probably the  c2 ’ X(3940)Y(3940)

20 Y(3940)  DD* ? B  KDD* 3940 MeV

21 X(3940)   J/  ? e + e -  J/  + (  J/  ) M(  J/  ) PRL 98, 082001

22 X(3940) ≠ Y(3940) @ 90% CL

23 Y(3940) confirmed by BaBar B ±  K ±  J/  B 0  K S  J/   J  ) ratio Some discrepancy in M &  ; general features agree PRL 101, 082001

24 Belle-BaBar direct comparison Belle will update with the complete  (4S) date set later this Fall Same binning (Belle published result : 253 fb -1 ) 492fb -1

25   Y(3915)   J/  from Belle 7.7  M: 3914  3  2 MeV,  : 23  10 +2 -8 MeV, N res = 55  14 +2 -14 events Signif. = 7.7 , preliminary Probably the same as the Belle/BaBar Y(3915) C.Z. Yuan’s talk in the next session

26 cc assignments for X(3940) & y(3915)? 3940MeV Y(3915) =  co ’?   (  J/  ) too large? X(3940) =  c ”?  mass too low? c”c”  c ’’’ 3915MeV  c0 ’ _

27 Z(4430) and Z 1 (4050) & Z 2 (4250) u c d c Smoking guns for charmed exotics:

28 B  K  ’ (in Belle) K*(890)  K +  - M 2 (K +  - ) M 2 (  +  ’) K*(1430)  K +  - ? ??

29 The Z(4430) ±   ±  ’ peak M(  ±  ’ ) GeV BK +’BK +’ Z(4430)  M (  ’ ) GeV evts near M(  ’)  4430 MeV M 2 (  ±  ’ ) GeV 2 M 2 (  ’ ) GeV 2  “K* Veto”

30 Shows up in all data subsamples

31 Could the Z(4430) be due to a reflection from the K  channel?

32 Cos   vs M 2 (  ’ ) 16 GeV 2 22 GeV 2 +1.0 cos   M (  ’) & cos   are tightly correlated; a peak in cos    peak in M(  ’) 0.25 ’’  K  (4.43) 2 GeV 2 M 2 (  ’)

33 S- P- & D-waves cannot make a peak (+ nothing else) at cos   ≈0.25 not without introducing other, even more dramatic features at other cos   (i.e., other M  ’ ) values.

34 But…

35 BaBar doesn’t see a significant Z(4430) + “For the fit … equivalent to the Belle analysis…we obtain mass & width values that are consistent with theirs,… but only ~1.9  from zero; fixing mass and width increases this to only ~3.1 .” Belle PRL: (4.1 ± 1.0 ± 1.4)x10 -5

36 Reanalysis of Belle’s B  K  ’ data using Dalitz Plot techniques

37 2-body isobar model for  K  ’  KZ + K2*’K2*’ K*  ’ K  ’ Our default model   ’ K*(890)  ’ K*(1410)  ’ K 0 *(1430)  ’ K 2 *(1430)  ’ K*(1680)  ’ KZ +

38 Results with no KZ + term        fit CL=0.1%  1 2 3 4 5 12 3 45 A B C AB C 

39 Results with a KZ + term    fit CL=36% 1 1 23 2 3 45 4 A 5 B A C B C

40 Compare with PRL results Signif: 6.4  Published results Mass & significance similar, width & errors are larger With Z(4430) Without Z(4430) Belle: = (3.2 +1.8+9.6 )x10 -5 0.9-1.6 BaBar: No big contradiction K* veto applied

41 Variations on a theme Others: Blatt f-f term 0  r=1.6fm  4fm; Z + spin J=0  J=1; incl K* in the bkg fcn Z(4430) + significance

42 The Z 1 (4050) + & Z 2 (4250) +   +  c1 peaks R. Mizuk et al (Belle), PRD 78,072004 (2008)

43 Dalitz analysis of B 0  K -  +  c1 K*(890) K*(1400)’s K*(1680) K 3 *(1780) M (J  ) GeV  E GeV ??? 

44 B  K  c1 Dalitz-plot analyses  KZ + K 2 *  c1 K*  c1 K  c1 Default Model   c1 K*(890)  c1 K*(1410)  c1 K 0 *(1430)  c1 K 2 *(1430)  c1 K*(1680)  c1 K 3 *(1780)  c1 KZ +

45 Fit model: all low-lying K*’s (no Z + state) ab cd ef g abcd g f e C.L.=3  10 -10

46 Fit model: all K*’s + one Z + state ab cd ef g abcd g f e C.L.=0.1%

47 Are there two? abcd ? ? ? ?

48 Fit model: all K*’s + two Z + states ab cd ef g abcd g f e C.L.=42%

49 Two Z-states give best fit Projection with K* veto

50 Systematics of B 0 → K - π +  c1 fit Significance of Z 1 (4050) + and Z 2 (4250) + is high. Fit assumes J Z1 =0, J Z2 =0; no signif. improvement for J Z1 =1 &/or J Z2 =1. M=1.04 GeV; G=0.26 GeV

51 Z(4430) + signal in B  K  ’ persists with a more complete amplitude analysis. –signif. ~6 , product Bf ~3x10 -5 (with large errors) No significant contradiction with the BaBar results –signif. = 2~3 , Product Bf<3x10 -5 Z 1 (4050) & Z 2 (4250), seen in B  K  c1, have similar properties (i.e. M &  ) & product Bf’s –signif. (at least one Z + )>10  ; (two Z + states)>5 

52 Summary The X3872 mass keeps getting closer & closer to MD0 + MD*0 B  K  X 3872 is very different from B  K  charmonium The X(3940) & Y(3940) seem to be distinct states Y(3940)  Y(3915)? Belle’s Z(4430) +   +  ’ signal is not a reflection from the K  channel Z 1 (2050) + & Z 2 (2050) +   +  c1 peaks  further evidence for charmed exotics Most XYZ states have large partial widths to hidden charm final states e + e -  J/  X 3940 B  K  Y 3940  DD*   J/  by charmonium standards

53 Summary

54 Improvement to M(D 0 )? Best single measurement from CLEOc: M D0 = 1864.847 ± 0.150 (stat) ± 0.095 (syst) MeV CLEOc uses invariant mass: large  M D0 dominates the error small  0 not a big contrib. & only uses D 0  K S  (  K + K - ) decays: well known ±2x16keV ±22keV  0.1 M D0 measured Bf  0.002 319 evts stat error dominates

55 M(D 0 ) measurement @ BESIII Use “beam constrained mass @  ” : need to know E beam precisely Use backscattered laser beam at the unused X-ing region to measure E beam (&M D0 ) to better than ±100 keV Approved, funded,& under construction


Download ppt "Exotics at & Stephen L. Olsen Seoul National University 447 th Wilhelm & Else Heraeus Seminar: Charmed Exotics Aug 10-12, 2009 Bad Honnef Germany & CDF."

Similar presentations


Ads by Google