Presentation is loading. Please wait.

Presentation is loading. Please wait.

Machine-Level Programming III: Procedures Jan 30, 2003

Similar presentations


Presentation on theme: "Machine-Level Programming III: Procedures Jan 30, 2003"— Presentation transcript:

1 Machine-Level Programming III: Procedures Jan 30, 2003
“The course that gives CMU its Zip!” Machine-Level Programming III: Procedures Jan 30, 2003 Topics IA32 stack discipline Register saving conventions Creating pointers to local variables

2 IA32 Stack Region of memory managed with stack discipline
Stack “Bottom” Region of memory managed with stack discipline Grows toward lower addresses Register %esp indicates lowest stack address address of top element Increasing Addresses Stack Grows Down Stack Pointer %esp Stack “Top”

3 IA32 Stack Pushing Pushing pushl Src Fetch operand at Src
Decrement %esp by 4 Write operand at address given by %esp Stack “Bottom” Increasing Addresses Stack Grows Down Stack Pointer %esp -4 Contents of Src Stack “Top”

4 IA32 Stack Popping Popping popl Dest
Read operand at address given by %esp Increment %esp by 4 Write to Dest Stack “Bottom” Increasing Addresses Stack Pointer %esp Stack Grows Down +4 Goes to Dest Stack “Top”

5 Stack Operation Examples
pushl %eax popl %edx 0x110 0x110 0x110 0x10c 0x10c 0x10c 0x108 123 0x108 123 0x108 123 0x104 0x104 213 213 %eax 213 %eax 213 213 %eax 213 %edx 555 %edx 555 %edx 555 %esp 0x108 %esp 0x104 0x108 %esp 0x104 0x108

6 Procedure Control Flow
Use stack to support procedure call and return Procedure call: call label Push return address on stack; Jump to label Return address value Address of instruction beyond call Example from disassembly 804854e: e8 3d call b90 <main> : pushl %eax Return address = 0x Procedure return: ret Pop address from stack; Jump to address

7 Procedure Call Example
804854e: e8 3d call b90 <main> : pushl %eax 0x110 0x10c 0x108 123 %esp 0x108 %eip 0x804854e %eip is the program counter

8 Procedure Call Example
804854e: e8 3d call b90 <main> : pushl %eax 0x110 0x10c (bump up %eip to next instruction) 0x108 123 %esp 0x108 %eip 0x804854e %eip is the program counter

9 Procedure Call Example
804854e: e8 3d call b90 <main> : pushl %eax 0x110 0x10c (bump up %eip to next instruction) 0x108 123 (save %eip on stack) %esp 0x108 %eip 0x %eip is the program counter

10 Procedure Call Example
804854e: e8 3d call b90 <main> : pushl %eax 0x110 0x10c (bump up %eip to next instruction) 0x108 123 0x104 (save %eip on stack) %esp 0x104 %eip 0x 0x %eip is the program counter

11 Procedure Call Example
804854e: e8 3d call b90 <main> : pushl %eax 8048b90 0x110 0x10c (bump up %eip to next instruction) 0x108 123 0x104 0x (save %eip on stack) %esp 0x104 %eip 0x 0x (set %eip to dest adr) %eip is the program counter

12 Procedure Return Example
: c ret 0x110 0x10c 0x108 123 0x104 0x %esp 0x104 %eip 0x 0x %eip is the program counter

13 Procedure Return Example
: c ret (incr %eip) 0x110 0x10c 0x108 123 (pop top of stack to %eip) 0x104 0x 0x %esp 0x104 %eip 0x 0x %eip is the program counter

14 Procedure Return Example
: c ret (incr %eip) 0x110 0x10c 0x108 123 (pop top of stack to %eip) 0x104 0x 0x %esp 0x108 %eip 0x 0x %eip is the program counter

15 Stack-Based Languages
Languages that Support Recursion e.g., C, Pascal, Java Code must be “Reentrant” Multiple simultaneous instantiations of single procedure Need some place to store state of each instantiation Arguments Local variables Return pointer Stack Discipline Callee returns before caller does State for given procedure needed for limited time When? Stack Allocated in Frames state for single procedure instantiation

16 Stack-Based Languages
Languages that Support Recursion e.g., C, Pascal, Java Code must be “Reentrant” Multiple simultaneous instantiations of single procedure Need some place to store state of each instantiation Arguments Local variables Return pointer Stack Discipline Callee returns before caller does State for given procedure needed for limited time From when called to when return Stack Allocated in Frames state for single procedure instantiation

17 Call Tree Example Code Structure Call Tree Procedure amI recursive
yoo(…) { who(); } yoo who(…) { • • • amI(); } who amI amI amI(…) { amI(); } amI amI Procedure amI recursive

18 Stack Frames Contents Management Pointers Local variables
Return information Temporary space Management Space allocated when enter procedure “Set-up” code (prolog) Deallocated when return “Finish” code (epilog) Pointers Stack pointer %esp indicates stack top Frame pointer %ebp indicates base of current frame yoo who amI Frame Pointer %ebp proc Stack Pointer %esp Stack “Top”

19 Stack Operation Call Tree • Frame Pointer %ebp yoo yoo(…) { • Stack
who(); } Stack Pointer %esp yoo

20 Stack Operation Call Tree • yoo yoo(…) { • who(); } who(…) • • •
amI(); Frame Pointer %ebp yoo who who Stack Pointer %esp

21 Stack Operation Call Tree • yoo yoo(…) { • who(); } who(…) • • •
amI(); amI(…) yoo who Frame Pointer %ebp who amI amI Stack Pointer %esp

22 Stack Operation Call Tree • yoo yoo(…) { • who(); } who(…) { • • •
amI(); } amI(…) { amI(); } amI(…) { amI(); } yoo who who amI amI Frame Pointer %ebp amI amI Stack Pointer %esp

23 Stack Operation Call Tree • yoo yoo(…) { • who(); } who(…) { • • •
amI(); } amI(…) { amI(); } amI(…) { amI(); } amI(…) { amI(); } yoo who who amI amI amI amI Frame Pointer %ebp amI amI Stack Pointer %esp

24 Stack Operation Call Tree • yoo yoo(…) { • who(); } who(…) { • • •
amI(); } amI(…) { amI(); } amI(…) { amI(); } yoo who who amI amI Frame Pointer %ebp amI amI Stack Pointer %esp amI

25 Stack Operation Call Tree • yoo yoo(…) { • who(); } who(…) { • • •
amI(); } amI(…) { amI(); } yoo who Frame Pointer %ebp who amI amI Stack Pointer %esp amI amI

26 Stack Operation Call Tree • yoo yoo(…) { • who(); } who(…) { • • •
amI(); } Frame Pointer %ebp yoo who who Stack Pointer %esp amI amI amI

27 Stack Operation Call Tree • yoo yoo(…) { • who(); } who(…) { • • •
amI(); } amI(…) { amI(); } yoo who Frame Pointer %ebp who amI amI amI Stack Pointer %esp amI amI

28 Stack Operation Call Tree • yoo yoo(…) { • who(); } Frame Pointer %ebp
• • • amI(); } yoo who who Stack Pointer %esp amI amI amI amI

29 Stack Operation Call Tree • Frame Pointer %ebp yoo yoo(…) { • who(); }
%esp yoo who amI amI amI amI

30 IA32/Linux Stack Frame Current Stack Frame (“Top” to Bottom)
Parameters for function about to call “Argument build” Local variables If can’t keep in registers Saved register context Old frame pointer Caller Stack Frame Return address Pushed by call instruction Arguments for this call Caller Frame Arguments Return Addr Frame Pointer (%ebp) Old %ebp Saved Registers + Local Variables Argument Build Stack Pointer (%esp)

31 Calling swap from call_swap
Revisiting swap Calling swap from call_swap int zip1 = 15213; int zip2 = 91125; void call_swap() { swap(&zip1, &zip2); } call_swap: • • • pushl $zip2 # Global Var pushl $zip1 # Global Var call swap Resulting Stack void swap(int *xp, int *yp) { int t0 = *xp; int t1 = *yp; *xp = t1; *yp = t0; } &zip2 &zip1 Rtn adr %esp

32 Revisiting swap swap: pushl %ebp movl %esp,%ebp pushl %ebx
movl 12(%ebp),%ecx movl 8(%ebp),%edx movl (%ecx),%eax movl (%edx),%ebx movl %eax,(%edx) movl %ebx,(%ecx) movl -4(%ebp),%ebx movl %ebp,%esp popl %ebp ret Prolog void swap(int *xp, int *yp) { int t0 = *xp; int t1 = *yp; *xp = t1; *yp = t0; } Body Epilog

33 swap Prolog #1 Resulting Entering Stack Stack swap: pushl %ebp
%ebp yp xp Rtn adr Old %ebp %ebp %esp &zip2 &zip1 Rtn adr %esp swap: pushl %ebp movl %esp,%ebp pushl %ebx

34 swap Prolog #2 Resulting Entering Stack Stack swap: pushl %ebp
%ebp &zip2 yp &zip1 xp Rtn adr %esp Rtn adr Old %ebp %ebp swap: pushl %ebp movl %esp,%ebp pushl %ebx %esp

35 swap Prolog #3 Resulting Entering Stack Stack Why save %ebx? swap:
%ebp &zip2 Why save %ebx? yp &zip1 xp Rtn adr %esp Rtn adr Old %ebp %ebp swap: pushl %ebp movl %esp,%ebp pushl %ebx Old %ebx %esp

36 Effect of swap Prolog Body Entering Stack Resulting Stack Offset
%ebp Offset (relative to %ebp) &zip2 12 yp &zip1 8 xp Rtn adr %esp 4 Rtn adr Old %ebp %ebp Old %ebx %esp movl 12(%ebp),%ecx # get yp movl 8(%ebp), %edx # get xp . . . Body

37 swap Finish #1 swap’s Stack movl -4(%ebp),%ebx movl %ebp,%esp
Offset Offset 12 yp 12 yp 8 xp 8 xp 4 Rtn adr 4 Rtn adr Old %ebp %ebp Old %ebp %ebp -4 Old %ebx %esp -4 Old %ebx %esp movl -4(%ebp),%ebx movl %ebp,%esp popl %ebp ret Observation Saved & restored register %ebx

38 swap Finish #2 swap’s swap’s Stack Stack movl -4(%ebp),%ebx
swap’s Stack Offset Offset 12 yp 12 yp 8 xp 8 xp 4 Rtn adr 4 Rtn adr Old %ebp %ebp Old %ebp %ebp -4 Old %ebx %esp %esp movl -4(%ebp),%ebx movl %ebp,%esp popl %ebp ret

39 swap Finish #3 swap’s swap’s Stack Stack movl -4(%ebp),%ebx
%ebp swap’s Stack Offset yp 12 yp xp 8 xp Rtn adr 4 Rtn adr %esp Old %ebp %ebp %esp movl -4(%ebp),%ebx movl %ebp,%esp popl %ebp ret

40 swap Finish #4 swap’s Stack Exiting Stack movl -4(%ebp),%ebx
%ebp %ebp Exiting Stack Offset 12 yp &zip2 8 xp &zip1 %esp 4 Rtn adr %esp movl -4(%ebp),%ebx movl %ebp,%esp popl %ebp ret Observation Saved & restored register %ebx Didn’t for %eax, %ecx, or %edx

41 Register Saving Conventions
When procedure yoo calls who:  yoo is the caller, who is the callee Can Register be Used for Temporary Storage? Contents of register %edx overwritten by who yoo: • • • movl $15213, %edx call who addl %edx, %eax ret who: • • • movl 8(%ebp), %edx addl $91125, %edx ret

42 Register Saving Conventions
When procedure yoo calls who:  yoo is the caller, who is the callee Can Register be Used for Temporary Storage? Conventions “Caller Save” Caller saves temporary in its frame before calling “Callee Save” Callee saves temporary in its frame before using

43 IA32/Linux Register Usage
Integer Registers Two have special uses %ebp, %esp Three managed as callee-save %ebx, %esi, %edi Old values saved on stack prior to using Three managed as caller-save %eax, %edx, %ecx Do what you please, but expect any callee to do so, as well Register %eax also stores returned value %eax Caller-Save Temporaries %edx %ecx %ebx Callee-Save Temporaries %esi %edi %esp Special %ebp

44 Swap: 1 mo’ time callswap: pushl %ebp movl %esp,%ebp subl $24,%esp
movl $1,-8(%ebp) addl $-8,%esp movl $2,-4(%ebp) leal -4(%ebp),%eax pushl %eax leal -8(%ebp),%eax call _swap movl -4(%ebp),%eax addl $-4,%esp movl -8(%ebp),%eax pushl $LC0 call _printf movl %ebp,%esp popl %ebp ret Void callswap(void) { int x = 1; int y = 2; swap(&x, &y); printf(“%d %d”, x, y); } void swap(int *xp, int *yp) { int t0 = *xp; int t1 = *yp; *xp = t1; *yp = t0; }

45 Callswap’s frame callswap: pushl %ebp movl %esp,%ebp subl $24,%esp
movl $1,-8(%ebp) addl $-8,%esp movl $2,-4(%ebp) leal -4(%ebp),%eax pushl %eax leal -8(%ebp),%eax call _swap movl -4(%ebp),%eax addl $-4,%esp movl -8(%ebp),%eax pushl $LC0 call _printf movl %ebp,%esp popl %ebp ret Void callswap(void) { int x = 1; int y = 2; swap(&x, &y); printf(“%d %d”, x, y); } Caller’s %ebp y x

46 After swap’s prolog Caller’s %ebp y x Void callswap(void) { int x = 1;
int y = 2; swap(&x, &y); printf(“%d %d”, x, y); } void swap(int *xp, int *yp) { int t0 = *xp; int t1 = *yp; *xp = t1; *yp = t0; } &y &x Swap’s Frame RetAdr caller’s $ebx

47 Recursive Factorial Prolog Where is X? Where is rval? Epilog
.globl rfact .type rfact: pushl %ebp movl %esp,%ebp pushl %ebx movl 8(%ebp),%ebx cmpl $1,%ebx jle .L78 leal -1(%ebx),%eax pushl %eax call rfact imull %ebx,%eax jmp .L79 .align 4 .L78: movl $1,%eax .L79: movl -4(%ebp),%ebx movl %ebp,%esp popl %ebp ret Recursive Factorial int rfact(int x) { int rval; if (x <= 1) return 1; rval = rfact(x-1); return rval * x; } Epilog Where is X? Where is rval?

48 Recursive Factorial Prolog Where is X? 8(%ebp), %ebx
.globl rfact .type rfact: pushl %ebp movl %esp,%ebp pushl %ebx movl 8(%ebp),%ebx cmpl $1,%ebx jle .L78 leal -1(%ebx),%eax pushl %eax call rfact imull %ebx,%eax jmp .L79 .align 4 .L78: movl $1,%eax .L79: movl -4(%ebp),%ebx movl %ebp,%esp popl %ebp ret Recursive Factorial int rfact(int x) { int rval; if (x <= 1) return 1; rval = rfact(x-1); return rval * x; } Prolog Where is X? 8(%ebp), %ebx Where is rval? %eax Epilog

49 Can now see that argument, x, is at 8(%ebp)
Rfact Stack Prolog pre %ebp %ebp x Rtn adr Caller %esp pre %ebx Entering Stack rfact: pushl %ebp movl %esp,%ebp pushl %ebx rfact: pushl %ebp movl %esp,%ebp pushl %ebx rfact: pushl %ebp movl %esp,%ebp pushl %ebx pre %ebp Old %ebp Caller pre %ebx 4 8 %ebp -4 x Can now see that argument, x, is at 8(%ebp) Rtn adr Callee %esp Old %ebx

50 Rfact Body Registers %ebx Stored value of x %eax
movl 8(%ebp),%ebx # ebx = x cmpl $1,%ebx # Compare x : 1 jle .L78 # If <= goto Term leal -1(%ebx),%eax # eax = x-1 pushl %eax # Push x-1 call rfact # rfact(x-1) imull %ebx,%eax # rval * x jmp .L79 # Goto done .L78: # Term: movl $1,%eax # return val = 1 .L79: # Done: int rfact(int x) { int rval; if (x <= 1) return 1; rval = rfact(x-1) ; return rval * x; } Registers %ebx Stored value of x %eax Temporary value of x-1 Returned value from rfact(x-1) Returned value from this call

51 Rfact Body Registers %ebx Stored value of x %eax
movl 8(%ebp),%ebx # ebx = x cmpl $1,%ebx # Compare x : 1 jle .L78 # If <= goto Term leal -1(%ebx),%eax # eax = x-1 pushl %eax # Push x-1 call rfact # rfact(x-1) imull %ebx,%eax # rval * x jmp .L79 # Goto done .L78: # Term: movl $1,%eax # return val = 1 .L79: # Done: int rfact(int x) { int rval; if (x <= 1) return 1; rval = rfact(x-1) ; return rval * x; } Registers %ebx Stored value of x %eax Temporary value of x-1 Returned value from rfact(x-1) Returned value from this call

52 Rfact Body Registers %ebx Stored value of x %eax
movl 8(%ebp),%ebx # ebx = x cmpl $1,%ebx # Compare x : 1 jle .L78 # If <= goto Term leal -1(%ebx),%eax # eax = x-1 pushl %eax # Push x-1 call rfact # rfact(x-1) imull %ebx,%eax # rval * x jmp .L79 # Goto done .L78: # Term: movl $1,%eax # return val = 1 .L79: # Done: int rfact(int x) { int rval; if (x <= 1) return 1; rval = rfact(x-1) ; return rval * x; } Registers %ebx Stored value of x %eax Temporary value of x-1 Returned value from rfact(x-1) Returned value from this call

53 Rfact Body Recursion Registers %ebx Stored value of x %eax
movl 8(%ebp),%ebx # ebx = x cmpl $1,%ebx # Compare x : 1 jle .L78 # If <= goto Term leal -1(%ebx),%eax # eax = x-1 pushl %eax # Push x-1 call rfact # rfact(x-1) imull %ebx,%eax # rval * x jmp .L79 # Goto done .L78: # Term: movl $1,%eax # return val = 1 .L79: # Done: Recursion int rfact(int x) { int rval; if (x <= 1) return 1; rval = rfact(x-1) ; return rval * x; } Registers %ebx Stored value of x %eax Temporary value of x-1 Returned value from rfact(x-1) Returned value from this call

54 Rfact Body Recursion Registers %ebx Stored value of x %eax
movl 8(%ebp),%ebx # ebx = x cmpl $1,%ebx # Compare x : 1 jle .L78 # If <= goto Term leal -1(%ebx),%eax # eax = x-1 pushl %eax # Push x-1 call rfact # rfact(x-1) imull %ebx,%eax # rval * x jmp .L79 # Goto done .L78: # Term: movl $1,%eax # return val = 1 .L79: # Done: Recursion int rfact(int x) { int rval; if (x <= 1) return 1; rval = rfact(x-1) ; return rval * x; } Registers %ebx Stored value of x %eax Temporary value of x-1 Returned value from rfact(x-1) Returned value from this call

55 Recursive Factorial Registers %eax used without first saving
.globl rfact .type rfact: pushl %ebp movl %esp,%ebp pushl %ebx movl 8(%ebp),%ebx cmpl $1,%ebx jle .L78 leal -1(%ebx),%eax pushl %eax call rfact imull %ebx,%eax jmp .L79 .align 4 .L78: movl $1,%eax .L79: movl -4(%ebp),%ebx movl %ebp,%esp popl %ebp ret Recursive Factorial int rfact(int x) { int rval; if (x <= 1) return 1; rval = rfact(x-1); return rval * x; } Registers %eax used without first saving %ebx used, but save at beginning & restore at end

56 Rfact Recursion x-1 leal -1(%ebx),%eax %ebp pushl %eax %esp x-1 %ebp
Rtn adr call rfact x x Rtn adr Old %ebp Old %ebx x-1 %eax %ebx x Rtn adr Old %ebp Old %ebx x-1 %eax %ebx Rtn adr Old %ebp %ebp Old %ebx %esp %eax %ebx x leal -1(%ebx),%eax # eax = x-1 pushl %eax # Push x-1 call rfact # rfact(x-1)

57 After Rfact Recursion? %ebx has value of x %eax has value of (x-1)!
leal -1(%ebx),%eax %ebp pushl %eax %esp x-1 %ebp %esp Rtn adr call rfact x x Rtn adr Old %ebp Old %ebx x-1 %eax %ebx x Rtn adr Old %ebp Old %ebx x-1 %eax %ebx Rtn adr Old %ebp %ebp Old %ebx %esp %eax %ebx x %ebx has value of x %eax has value of (x-1)! leal -1(%ebx),%eax # eax = x-1 pushl %eax # Push x-1 call rfact # rfact(x-1) imull %ebx,%eax # rval * x

58 Rfact Result Return from Call imull %ebx,%eax x! x x Rtn adr Rtn adr
Old %ebp %ebp Old %ebp %ebp Old %ebx Old %ebx x-1 %esp x-1 %esp %eax (x-1)! (x-1)! %eax (x-1)! %ebx x %ebx x Assume that rfact(x-1) returns (x-1)! in register %eax

59 Rfact Epilog movl -4(%ebp),%ebx movl %ebp,%esp popl %ebp ret
pre %ebp x Rtn adr Old %ebp %ebp 4 8 %esp x! %eax Old %ebx %ebx pre %ebp pre %ebx x Rtn adr %ebp %esp x! %eax Old %ebx %ebx pre %ebp pre %ebx pre %ebx 8 x 4 Rtn adr Old %ebp %ebp -4 Old %ebx Old %ebx -8 x-1 %esp %eax x! %ebx x

60 Pointer Code Recursive Procedure Top-Level Call
void s_helper (int x, int *accum) { if (x <= 1) return; else { int z = *accum * x; *accum = z; s_helper (x-1,accum); } int sfact(int x) { int val = 1; s_helper(x, &val); return val; } Pass pointer to update location

61 Creating & Initializing Pointer
Initial part of sfact _sfact: pushl %ebp # Save %ebp movl %esp,%ebp # Set %ebp subl $16,%esp # Add 16 bytes movl 8(%ebp),%edx # edx = x movl $1,-4(%ebp) # val = 1 _sfact: pushl %ebp # Save %ebp movl %esp,%ebp # Set %ebp subl $16,%esp # Add 16 bytes movl 8(%ebp),%edx # edx = x movl $1,-4(%ebp) # val = 1 _sfact: pushl %ebp # Save %ebp movl %esp,%ebp # Set %ebp subl $16,%esp # Add 16 bytes movl 8(%ebp),%edx # edx = x movl $1,-4(%ebp) # val = 1 _sfact: pushl %ebp # Save %ebp movl %esp,%ebp # Set %ebp subl $16,%esp # Add 16 bytes movl 8(%ebp),%edx # edx = x movl $1,-4(%ebp) # val = 1 8 x 4 Rtn adr Old %ebp %ebp -4 Temp. Space %esp val = 1 Unused -8 Using Stack for Local Variable Variable val must be stored on stack Need to create pointer to it Compute pointer as -4(%ebp) Push on stack as second argument -12 -16 int sfact(int x) { int val = 1; s_helper(x, &val); return val; }

62 Passing Pointer Calling s_helper from sfact Stack at time of call 8 x
leal -4(%ebp),%eax # Compute &val pushl %eax # Push on stack pushl %edx # Push x call s_helper # call movl -4(%ebp),%eax # Return val • • • # Finish leal -4(%ebp),%eax # Compute &val pushl %eax # Push on stack pushl %edx # Push x call s_helper # call movl -4(%ebp),%eax # Return val • • • # Finish leal -4(%ebp),%eax # Compute &val pushl %eax # Push on stack pushl %edx # Push x call s_helper # call movl -4(%ebp),%eax # Return val • • • # Finish 4 Rtn adr Old %ebp %ebp -4 val =x! val = 1 &val -8 Unused -12 int sfact(int x) { int val = 1; s_helper(x, &val); return val; } -16 %esp x

63 Using Pointer Register %ecx holds x
void s_helper (int x, int *accum) { • • • int z = *accum * x; *accum = z; } accum*x %edx accum x %eax accum*x %ecx x • • • movl %ecx,%eax # z = x imull (%edx),%eax # z *= *accum movl %eax,(%edx) # *accum = z Register %ecx holds x Register %edx holds pointer to accum Use access (%edx) to reference memory

64 Summary The Stack Makes Recursion Work
Private storage for each instance of procedure call Instantiations don’t clobber each other Addressing of locals + arguments can be relative to stack positions Can be managed by stack discipline Procedures return in inverse order of calls IA32 Procedures Combination of Instructions + Conventions Call / Ret instructions Register usage conventions Caller / Callee save %ebp and %esp Stack frame organization conventions


Download ppt "Machine-Level Programming III: Procedures Jan 30, 2003"

Similar presentations


Ads by Google