Presentation is loading. Please wait.

Presentation is loading. Please wait.

Aerosol and chemical transport in tropical convection ACTIVE Geraint Vaughan University of Manchester, UK on behalf of the ACTIVE team.

Similar presentations


Presentation on theme: "Aerosol and chemical transport in tropical convection ACTIVE Geraint Vaughan University of Manchester, UK on behalf of the ACTIVE team."— Presentation transcript:

1 Aerosol and chemical transport in tropical convection ACTIVE Geraint Vaughan University of Manchester, UK on behalf of the ACTIVE team

2 The Consortium University of Manchester University of Cambridge University of York, UK York University, Canada DLR, Oberpfaffenhofen, Germany FZ Julich, Germany NCAR, Boulder, USA Australian Bureau of Meteorology Airborne Research Australia NERC Airborne Research Facility

3 Scientific problems How does air get to the Tropical tropopause layer (TTL)? By large-scale transport or by rapid convective uplift? What is the partitioning between these sources? How much, and what kind of aerosol, reaches the TTL in deep convection? How does this aerosol affect the development of cirrus clouds in the TTL?

4 Objectives  Relate measurements of aerosols and chemicals in the TTL to low-level sources.  Determine how deep convection modifies the aerosol population reaching the TTL, and thus evaluate its impact on cirrus nucleation.  Determine the relative contribution of convection and large-scale transport to the composition of the TTL over Darwin.  Compare the effects of monsoon and pre- monsoon convection on the composition of the TTL.  Determine the contribution of deep convection to the NO x and O 3 budget in the TTL  Measure how much black carbon reaches the outflow regions of the storms.

5 Field campaign in Darwin Graphic courtesy of TWP- ICE

6 Airborne measurements for ACTIVE ARA Egrett, 10 - 15 km NERC Dornier 0-5 km Ozonesondes (profiles)

7 Egrett payload Basic Meteorology and positionPressure, temperature, wind (1 Hz), GPS DMT Single Particle Soot Photometer (SP-2) †Aerosol particle size distribution (0.2 – 1.0 µm), light absorbing fraction (LAP), carbon mass, metal 2 x TSI-3010 Condensation Particle Counter (CPC)Total condensation particles > 40 nm & > 80 nm DMT Cloud, Aerosol & Precipitation Spectrometer (CAPS)Cloud Droplet psd, aerosol/small particle assymetry, aerosol refractive index,large ice psd, (0.3<D p <3,200 µm), Total Liquid Water Content DMT Cloud Droplet Probe (CDP)Particle Size Distribution (2< D p <60 µm) SPEC Cloud Particle Imager CPI-230Cloud particle/ice CCD images, (30 < D p < 2,300 µm) Buck Research CR-2 frost point hygrometer Temperature, dew/ice point, 20 s,  0.1  2X Tunable diode laser Hygrometer (SpectraSensors) Water vapour, 2 Hz,  0.005 ppmv precision Julich CO analyserHigh precision (± 2 ppb), fast response (10 Hz) CO Cambridge Miniature Gas-Chromatograph Halocarbons (Cl, Br, I), 3-6 min,  5% TE-49C UV Ozone sensorOzone concentration (± 1 ppbv, 10 seconds) Adsorbent tube carbon trapC4-C9 aliphatics, acetone, monoterpenes NO and NO 2 chemiluminescent detector †  200 ppt @ 10 Hz;  30 ppt @ 4 s integration † alternates Aerosol Humidity Cloud Physics Chemistry Met/Position

8 Dornier payload Basic meteorologyAventech probeARSF/Manchester Position/TimingGPSARSF Aerosol Mass SpectrometerAerosol compositionn, 30 – 2000 nmManchester Condensation particle counterAerosol concentration > 10 nmManchester Grimm Optical Particle CounterAerosol size distribution, 0.5 – 20 μmManchester Ultra high sensitivity aerosol spectrometer Aerosol size distribution 50 nm – 2 µm Manchester Aerosol spectrometer probeAerosol size dist n, 0.1 – 1 µmManchester FSSPAerosol, size ( 2- 47 µm)Manchester FiltersCoarse aerosol compositionManchester OzoneUV absorption, 2BYork COAL5003York VOCAdsorbent tubesYork NO/NO x Chemiluminescence/catalysisYork HalocarbonsDIRAC gas chromatographCambridge Black CarbonPSAPDLR Aerosol Chemistry Met/Position

9 Experiment Plan: two campaigns 7 Nov- 10 Dec 2005 concentrating on HECTOR. With SCOUT-O3: European campaign to study TTL and TLS using DLR Falcon and Russian Geophysika. 16 Jan-17 Feb 2006 concentrating on monsoon and continental convection. With TWP-ICE: US/Australian campaign to study cirrus clouds and convection using multiple aircraft and ground-based instruments

10 Campaign 1 13 ED1415 ED16ED GF 171819 D GF 20212223 D GF 24 D2526 27 E28 D F 29 GF 30ED GF(2) 1 ED23 E 4 ED5 ED GF 6 E78 E9 E10 E Test Survey Hector Mixed survey/Hector Nov Dec Single- cellular Hector Multi-cellular Hector Mini-monsoon

11 Campaign 2 Jan16171819 D20ED21 22ED T 23 E T 2425 ED PT 26 D27 ED PT 28 2930 D31 E1 ED2 D3 ED4 56 ED PT 78 ED T 9 D T 10ED PT 11 12 ED PT 13 E14 ED15 E1617Feb Test Survey Hector Monsoon Aged anvil Lidar Single- cellular Hector Multi-cellular Hector Westerly Monsoon Monsoon trough Inactive Monsoon

12 Evolution of Egrett CO profiles during ACTIVE Data from A. Volz-Thomas and W. Pätz

13 16 Nov 2005 Satellite data from BoM, aircraft tracks by G. Allen 15.4 5 17:00

14 Cloud particles: CAPS Cloud imaging probe: large particles Cloud and aerosol spectrometer: small particles Data: A. Heymsfield and A. Bansamer

15 Cloud Particle Imager Data: P. Connolly

16 Dornier CO and aerosol, 16/11/05 Data from J. Hamilton, M. Flynn and P. Connolly

17 Dornier CO and aerosol, 8/2/05 Data from J. Hamilton, M. Flynn and P. Connolly

18 “Chemical Equator” flight 3/2/06 CO in ppbv, Aerosol > 300 nm in cm -3 Data from J. Hamilton, M. Flynn and P. Connolly

19 Summary Around 30 flights with each aircraft in and around tropical convection Inflow conditions change from polluted early in November (smoke from biomass burning) to very clean in Jan/Feb Hectors observed in polluted and clean regine Monsoon convection observed in the second half of January

20

21 The Consortium University of Manchester: Geraint Vaughan (PI), Tom Choularton, Hugh Coe Martin Gallagher, Keith Bower University of Cambridge: John Pyle, Neil Harris, Peter Haynes, Rod Jones University of York (UK): Ally Lewis York University (Toronto): Jim Whiteway DLR (Germany): Reinhold Busen FZ Julich, Germany: Andreas Volz-Thomas NCAR, Boulder: Andy Heymsfield Australian Bureau of Meteorology: Peter May Airborne Research Australia: Jörg Hacker

22 Summary of flights Campaign 1 Campaign 2 Egret t Dornier O 3 sondes: 23 8 13 15 12 15

23 Summary 7 Egrett Hector flights (3 NO X, 4 aerosol) 2 Egrett cirrus flights (1 NO x, 1 aerosol) 1 Egrett survey (aerosol) 3 Egrett test flights 7 Dornier convection flights 3 Dornier survey flights Intercomparison leg 2 Dornier test flights 23 ozonesondes 2 Monsoon anvil flights (1 NO x, 1 aerosol) 5 Egrett Hector flights (2 NO X, 3 aerosol) 3 Egrett cirrus flights (1 NO x, 2 aerosol) 4 Egrett survey (1 aerosol, 2 lidar, 1 transit) 1 Egrett calibration flight 7 Dornier convection flights 7 Dornier survey flights Intercomparison flight 1 Dornier test flights 8 ozonesondes Campaign 1 Campaign 2

24 Aircraft –ACTIVE, TWP-ICE, SCOUT-O3 DLR Falcon: in-situ, remote sensing M-55 Geophysica : In situ microphysics, chemistry NERC Dornier: in-situ, aerosol, chemistry, 21 km 15 km 11 km 9 km 5 km 3 km Max ht ARA Egrett: In-situ microphysics, aerosol, chemistry NASA/DOE Proteus:Remote sensing, in-situ King Air: Upward-looking radar and lidar ARA Dimona: Fluxes, BL structure

25 Modelling plan In Situ measurements CRM EMM MAC TOMCAT TRAJ Radar reflectivity Low-level aircraft Tracer fields (e.g. CO) Cloud microphysics Clo Cloud microphysics Aerosol Active gases (O 3, NO x ) Large-scale fields Large-scale fields (fine structure) Comparison with data Input Output

26 Modelling Large scale modelling: p-TOMCAT 3D CTM with detailed chemistry run at, say, 0.5  x0.5  Air parcel trajectory model Transport into/out of TTL Large scale structure of TTL Role of lightning NOx on TTL ozone Modelling individual storms: MetOffice CRM + UMIST  physics (EMM)  physicsof anvils for comparison with data Fluxes of particles, tracers thro’ clouds Microphysics, Aerosols & Chemistry (MAC) More explicit size-resolved aerosol NOx production in lightning


Download ppt "Aerosol and chemical transport in tropical convection ACTIVE Geraint Vaughan University of Manchester, UK on behalf of the ACTIVE team."

Similar presentations


Ads by Google