Presentation is loading. Please wait.

Presentation is loading. Please wait.

1 Wireless Networks ECS 152A Acknowledgement: slides from Kurose and Ross.

Similar presentations


Presentation on theme: "1 Wireless Networks ECS 152A Acknowledgement: slides from Kurose and Ross."— Presentation transcript:

1 1 Wireless Networks ECS 152A Acknowledgement: slides from Kurose and Ross

2 2 Wireless and Mobile Networks Background: r # wireless (mobile) phone subscribers now exceeds # wired phone subscribers! r computer nets: laptops, palmtops, PDAs, Internet-enabled phone promise anytime untethered Internet access r two important (but different) challenges m communication over wireless link m handling mobile user who changes point of attachment to network

3 3 Chapter 6 outline 6.1 Introduction Wireless r 6.2 Wireless links, characteristics r 6.3 IEEE 802.11 wireless LANs (“wi-fi”) r 6.4 Cellular Internet Access m architecture m standards (e.g., GSM) Mobility r 6.5 Principles: addressing and routing to mobile users r 6.6 Mobile IP r 6.7 Handling mobility in cellular networks r 6.8 Mobility and higher- layer protocols 6.9 Summary

4 4 Elements of a wireless network network infrastructure wireless hosts r laptop, PDA, IP phone r run applications r may be stationary (non-mobile) or mobile m wireless does not always mean mobility

5 5 Elements of a wireless network network infrastructure base station r typically connected to wired network r relay - responsible for sending packets between wired network and wireless host(s) in its “area” m e.g., cell towers 802.11 access points

6 6 Elements of a wireless network network infrastructure wireless link r typically used to connect mobile(s) to base station r also used as backbone link r multiple access protocol coordinates link access r various data rates, transmission distance

7 7 Characteristics of selected wireless link standards 384 Kbps 56 Kbps 54 Mbps 5-11 Mbps 1 Mbps 802.15 802.11b 802.11{a,g} IS-95 CDMA, GSM UMTS/WCDMA, CDMA2000.11 p-to-p link 2G 3G Indoor 10 – 30m Outdoor 50 – 200m Mid range outdoor 200m – 4Km Long range outdoor 5Km – 20Km

8 8 Elements of a wireless network network infrastructure infrastructure mode r base station connects mobiles into wired network r handoff: mobile changes base station providing connection into wired network

9 9 Elements of a wireless network Ad hoc mode r no base stations r nodes can only transmit to other nodes within link coverage r nodes organize themselves into a network: route among themselves

10 10 Characteristics of Wireless Systems r Spectrum is limited m We cannot reproduce spectrum m A few GHz of “good” spectrum for all applications r Wireless is a shared medium m Broadcast nature m Interference r Unpredictable, unreliable, time-varying r Wireless vs. mobility r Limited battery r Multi-user diversity

11 11 Wireless Link Characteristics Differences from wired link …. m decreased signal strength: radio signal attenuates as it propagates through matter (path loss) m interference from other sources: standardized wireless network frequencies (e.g., 2.4 GHz) shared by other devices (e.g., phone); devices (motors) interfere as well m multipath propagation: radio signal reflects off objects ground, arriving ad destination at slightly different times …. make communication across (even a point to point) wireless link much more “difficult”

12 12 Wireless network characteristics Multiple wireless senders and receivers create additional problems (beyond multiple access): A B C Hidden terminal problem r B, A hear each other r B, C hear each other r A, C can not hear each other means A, C unaware of their interference at B A B C A’s signal strength space C’s signal strength Signal fading: r B, A hear each other r B, C hear each other r A, C can not hear each other interferring at B

13 13 Scarce Radio Resource r Wireline networks m High bandwidth and reliable channel m Core router: Gbps-Tbps r Wireless systems m Limited nature resource (radio frequency) m Capacity is limited by available frequency m 3G data rate: up to 2Mbps m Requirement: spectrum efficiency

14 14 Channel Conditions r Decides transmission performance r Determined by m Strength of desired signal m Noise level Interference from other transmissions Background noise m Time-varying and location-dependent.

15 15 Interference and Noise

16 16 Propagation Environment

17 17 Time-varying Channel Conditions r Due to users’ mobility and variability in the propagation environment, both desired signal and interference are time-varying and location- dependent r A measure of channel quality : SINR ( Signal to Interference plus Noise Ratio )

18 18 Illustration of Channel Conditions Based on Lee’s path loss model, log-normal shadowing, and Raleigh fading

19 19 Performance vs. Channel Condition r Voice users: better voice quality at high SINR for a fixed transmission rate; r Data users: higher transmission rate at high SINR for a given bit error rate; r Adaptation techniques are specified in 3G standards. m TDMA: adaptive coding and modulation m CDMA: variable spreading and coding

20 20 Chapter 6 outline 6.1 Introduction Wireless r 6.2 Wireless links, characteristics m CDMA r 6.3 IEEE 802.11 wireless LANs (“wi-fi”) r 6.4 Cellular Internet Access m architecture m standards (e.g., GSM) Mobility r 6.5 Principles: addressing and routing to mobile users r 6.6 Mobile IP r 6.7 Handling mobility in cellular networks r 6.8 Mobility and higher- layer protocols 6.9 Summary

21 21 IEEE 802.11 Wireless LAN r 802.11b m 2.4-5 GHz unlicensed radio spectrum m up to 11 Mbps m direct sequence spread spectrum (DSSS) in physical layer all hosts use same chipping code m widely deployed, using base stations r 802.11a m 5-6 GHz range m up to 54 Mbps r 802.11g m 2.4-5 GHz range m up to 54 Mbps r All use CSMA/CA for multiple access r All have base-station and ad-hoc network versions

22 22 802.11 LAN architecture r wireless host communicates with base station m base station = access point (AP) r Basic Service Set (BSS) (aka “cell”) in infrastructure mode contains: m wireless hosts m access point (AP): base station m ad hoc mode: hosts only BSS 1 BSS 2 Internet hub, switch or router AP

23 23 802.11: Channels, association r 802.11b: 2.4GHz-2.485GHz spectrum divided into 11 channels at different frequencies m AP admin chooses frequency for AP m interference possible: channel can be same as that chosen by neighboring AP! r host: must associate with an AP m scans channels, listening for beacon frames containing AP’s name (SSID) and MAC address m selects AP to associate with m may perform authentication [Chapter 8] m will typically run DHCP to get IP address in AP’s subnet

24 24 hub or switch AP 2 AP 1 H1 BBS 2 BBS 1 802.11: mobility within same subnet router r H1 remains in same IP subnet: IP address can remain same r switch: which AP is associated with H1? m self-learning (Ch. 5): switch will see frame from H1 and “remember” which switch port can be used to reach H1

25 25 M radius of coverage S S S P P P P M S Master device Slave device Parked device (inactive) P 802.15: personal area network r less than 10 m diameter r replacement for cables (mouse, keyboard, headphones) r ad hoc: no infrastructure r master/slaves: m slaves request permission to send (to master) m master grants requests r 802.15: evolved from Bluetooth specification m 2.4-2.5 GHz radio band m up to 721 kbps

26 26 Chapter 6 outline 6.1 Introduction Wireless r 6.2 Wireless links, characteristics m CDMA r 6.3 IEEE 802.11 wireless LANs (“wi-fi”) r 6.4 Cellular Internet Access m architecture m standards (e.g., GSM) Mobility r 6.5 Principles: addressing and routing to mobile users r 6.6 Mobile IP r 6.7 Handling mobility in cellular networks r 6.8 Mobility and higher- layer protocols 6.9 Summary

27 27 Mobile Switching Center Public telephone network, and Internet Mobile Switching Center Components of cellular network architecture  connects cells to wide area net  manages call setup (more later!)  handles mobility (more later!) MSC  covers geographical region  base station (BS) analogous to 802.11 AP  mobile users attach to network through BS  air-interface: physical and link layer protocol between mobile and BS cell wired network

28 28 Cellular networks: the first hop Two techniques for sharing mobile-to-BS radio spectrum r combined FDMA/TDMA: divide spectrum in frequency channels, divide each channel into time slots r CDMA: code division multiple access frequency bands time slots

29 29 Cellular standards: brief survey 2G systems: voice channels r IS-136 TDMA: combined FDMA/TDMA (north america) r GSM (global system for mobile communications): combined FDMA/TDMA m most widely deployed r IS-95 CDMA: code division multiple access IS-136 GSM IS-95 GPRS EDGE CDMA-2000 UMTS TDMA/FDMA Don’t drown in a bowl of alphabet soup: use this for reference only

30 30 Cellular standards: brief survey 2.5 G systems: voice and data channels r for those who can’t wait for 3G service: 2G extensions r general packet radio service (GPRS) m evolved from GSM m data sent on multiple channels (if available) r enhanced data rates for global evolution (EDGE) m also evolved from GSM, using enhanced modulation m Date rates up to 384K r CDMA-2000 (phase 1) m data rates up to 144K m evolved from IS-95

31 31 Cellular standards: brief survey 3G systems: voice/data r Universal Mobile Telecommunications Service (UMTS) m GSM next step, but using CDMA r CDMA-2000 ….. more (and more interesting) cellular topics due to mobility (stay tuned for details)

32 32 Chapter 6 outline 6.1 Introduction Wireless r 6.2 Wireless links, characteristics m CDMA r 6.3 IEEE 802.11 wireless LANs (“wi-fi”) r 6.4 Cellular Internet Access m architecture m standards (e.g., GSM) Mobility r 6.5 Principles: addressing and routing to mobile users r 6.6 Mobile IP r 6.7 Handling mobility in cellular networks r 6.8 Mobility and higher- layer protocols 6.9 Summary

33 33 What is mobility? r spectrum of mobility, from the network perspective: no mobility high mobility mobile wireless user, using same access point mobile user, passing through multiple access point while maintaining ongoing connections ( like cell phone) mobile user, connecting/ disconnecting from network using DHCP.

34 34 Mobility: Vocabulary home network: permanent “home” of mobile (e.g., 128.119.40/24) Permanent address: address in home network, can always be used to reach mobile e.g., 128.119.40.186 home agent: entity that will perform mobility functions on behalf of mobile, when mobile is remote wide area network correspondent

35 35 Mobility: more vocabulary Care-of-address: address in visited network. (e.g., 79,129.13.2) wide area network visited network: network in which mobile currently resides (e.g., 79.129.13/24) Permanent address: remains constant ( e.g., 128.119.40.186) home agent: entity in visited network that performs mobility functions on behalf of mobile. correspondent: wants to communicate with mobile

36 36 How do you contact a mobile friend: r search all phone books? r call her parents? r expect her to let you know where he/she is? I wonder where Alice moved to? Consider friend frequently changing addresses, how do you find her?

37 37 Mobility: approaches r Let routing handle it: routers advertise permanent address of mobile-nodes-in-residence via usual routing table exchange. m routing tables indicate where each mobile located m no changes to end-systems r Let end-systems handle it: m indirect routing: communication from correspondent to mobile goes through home agent, then forwarded to remote m direct routing: correspondent gets foreign address of mobile, sends directly to mobile

38 38 Mobility: approaches r Let routing handle it: routers advertise permanent address of mobile-nodes-in-residence via usual routing table exchange. m routing tables indicate where each mobile located m no changes to end-systems r let end-systems handle it: m indirect routing: communication from correspondent to mobile goes through home agent, then forwarded to remote m direct routing: correspondent gets foreign address of mobile, sends directly to mobile not scalable to millions of mobiles

39 39 Mobility: registration End result: r Foreign agent knows about mobile r Home agent knows location of mobile wide area network home network visited network 1 mobile contacts foreign agent on entering visited network 2 foreign agent contacts home agent home: “this mobile is resident in my network”

40 40 Mobility via Indirect Routing wide area network home network visited network 3 2 4 1 correspondent addresses packets using home address of mobile home agent intercepts packets, forwards to foreign agent foreign agent receives packets, forwards to mobile mobile replies directly to correspondent

41 41 Indirect Routing: comments r Mobile uses two addresses: m permanent address: used by correspondent (hence mobile location is transparent to correspondent) m care-of-address: used by home agent to forward datagrams to mobile r foreign agent functions may be done by mobile itself r triangle routing: correspondent-home-network- mobile m inefficient when correspondent, mobile are in same network

42 42 Indirect Routing: moving between networks r suppose mobile user moves to another network m registers with new foreign agent m new foreign agent registers with home agent m home agent update care-of-address for mobile m packets continue to be forwarded to mobile (but with new care-of-address) r mobility, changing foreign networks transparent: on going connections can be maintained!

43 43 Mobility via Direct Routing wide area network home network visited network 4 2 4 1 correspondent requests, receives foreign address of mobile correspondent forwards to foreign agent foreign agent receives packets, forwards to mobile mobile replies directly to correspondent 3

44 44 Mobility via Direct Routing: comments r overcome triangle routing problem r non-transparent to correspondent: correspondent must get care-of-address from home agent m what if mobile changes visited network?

45 45 wide area network 1 foreign net visited at session start anchor foreign agent 2 4 new foreign agent 3 5 correspondent agent correspondent new foreign network Accommodating mobility with direct routing r anchor foreign agent: FA in first visited network r data always routed first to anchor FA r when mobile moves: new FA arranges to have data forwarded from old FA (chaining)

46 46 Chapter 6 outline 6.1 Introduction Wireless r 6.2 Wireless links, characteristics m CDMA r 6.3 IEEE 802.11 wireless LANs (“wi-fi”) r 6.4 Cellular Internet Access m architecture m standards (e.g., GSM) Mobility r 6.5 Principles: addressing and routing to mobile users r 6.6 Mobile IP r 6.7 Handling mobility in cellular networks r 6.8 Mobility and higher- layer protocols 6.9 Summary

47 47 Mobile IP r RFC 3220 r has many features we’ve seen: m home agents, foreign agents, foreign-agent registration, care-of-addresses, encapsulation (packet-within-a-packet) r three components to standard: m indirect routing of datagrams m agent discovery m registration with home agent

48 48 Mobile IP: indirect routing Permanent address: 128.119.40.186 Care-of address: 79.129.13.2 dest: 128.119.40.186 packet sent by correspondent dest: 79.129.13.2 dest: 128.119.40.186 packet sent by home agent to foreign agent: a packet within a packet dest: 128.119.40.186 foreign-agent-to-mobile packet

49 49 Mobile IP: agent discovery r agent advertisement: foreign/home agents advertise service by broadcasting ICMP messages (typefield = 9) R bit: registration required H,F bits: home and/or foreign agent

50 50 Mobile IP: registration example

51 51 Components of cellular network architecture correspondent MSC wired public telephone network different cellular networks, operated by different providers recall:

52 52 Handling mobility in cellular networks r home network: network of cellular provider you subscribe to (e.g., Sprint PCS, Verizon) m home location register (HLR): database in home network containing permanent cell phone #, profile information (services, preferences, billing), information about current location (could be in another network) r visited network: network in which mobile currently resides m visitor location register (VLR): database with entry for each user currently in network m could be home network

53 53 Public switched telephone network mobile user home Mobile Switching Center HLR home network visited network correspondent Mobile Switching Center VLR GSM: indirect routing to mobile 1 call routed to home network 2 home MSC consults HLR, gets roaming number of mobile in visited network 3 home MSC sets up 2 nd leg of call to MSC in visited network 4 MSC in visited network completes call through base station to mobile

54 54 Mobile Switching Center VLR old BSS new BSS old routing new routing GSM: handoff with common MSC r Handoff goal: route call via new base station (without interruption) r reasons for handoff: m stronger signal to/from new BSS (continuing connectivity, less battery drain) m load balance: free up channel in current BSS m GSM doesn’t mandate why to perform handoff (policy), only how (mechanism) r handoff initiated by old BSS

55 55 Mobile Switching Center VLR old BSS 1 3 2 4 5 6 7 8 GSM: handoff with common MSC new BSS 1. old BSS informs MSC of impending handoff, provides list of 1 + new BSSs 2. MSC sets up path (allocates resources) to new BSS 3. new BSS allocates radio channel for use by mobile 4. new BSS signals MSC, old BSS: ready 5. old BSS tells mobile: perform handoff to new BSS 6. mobile, new BSS signal to activate new channel 7. mobile signals via new BSS to MSC: handoff complete. MSC reroutes call 8 MSC-old-BSS resources released

56 56 home network Home MSC PSTN correspondent MSC anchor MSC MSC (a) before handoff GSM: handoff between MSCs r anchor MSC: first MSC visited during cal m call remains routed through anchor MSC r new MSCs add on to end of MSC chain as mobile moves to new MSC r IS-41 allows optional path minimization step to shorten multi-MSC chain

57 57 home network Home MSC PSTN correspondent MSC anchor MSC MSC (b) after handoff GSM: handoff between MSCs r anchor MSC: first MSC visited during cal m call remains routed through anchor MSC r new MSCs add on to end of MSC chain as mobile moves to new MSC r IS-41 allows optional path minimization step to shorten multi-MSC chain

58 58 Mobility: GSM versus Mobile IP GSM elementComment on GSM elementMobile IP element Home systemNetwork to which the mobile user’s permanent phone number belongs Home network Gateway Mobile Switching Center, or “home MSC”. Home Location Register (HLR) Home MSC: point of contact to obtain routable address of mobile user. HLR: database in home system containing permanent phone number, profile information, current location of mobile user, subscription information Home agent Visited SystemNetwork other than home system where mobile user is currently residing Visited network Visited Mobile services Switching Center. Visitor Location Record (VLR) Visited MSC: responsible for setting up calls to/from mobile nodes in cells associated with MSC. VLR: temporary database entry in visited system, containing subscription information for each visiting mobile user Foreign agent Mobile Station Roaming Number (MSRN), or “roaming number” Routable address for telephone call segment between home MSC and visited MSC, visible to neither the mobile nor the correspondent. Care-of- address

59 59 Wireless, mobility: impact on higher layer protocols r logically, impact should be minimal … m best effort service model remains unchanged m TCP and UDP can (and do) run over wireless, mobile r … but performance-wise: m packet loss/delay due to bit-errors (discarded packets, delays for link-layer retransmissions), and handoff m TCP interprets loss as congestion, will decrease congestion window un-necessarily m delay impairments for real-time traffic m limited bandwidth of wireless links

60 60 Chapter 6 Summary Wireless r wireless links: m capacity, distance m channel impairments m CDMA r IEEE 802.11 (“wi-fi”) m CSMA/CA reflects wireless channel characteristics r cellular access m architecture m standards (e.g., GSM, CDMA-2000, UMTS) Mobility r principles: addressing, routing to mobile users m home, visited networks m direct, indirect routing m care-of-addresses r case studies m mobile IP m mobility in GSM r impact on higher-layer protocols


Download ppt "1 Wireless Networks ECS 152A Acknowledgement: slides from Kurose and Ross."

Similar presentations


Ads by Google