Download presentation

1
**Introduction to Quantum Physics**

Chapter 40 Introduction to Quantum Physics PHY 1371 Dr. Jie Zou

2
**Outline Blackbody radiation and Planck’s Hypothesis**

The photoelectron effect PHY 1371 Dr. Jie Zou

3
Blackbody Black body: A black body is an ideal system that absorbs all radiation incident on it. Black body radiation: The electromagnetic radiation emitted by the black body is called black-body radiation. PHY 1371 Dr. Jie Zou

4
**Black-body radiation Two experimental findings:**

The total power of the emitted radiation increases with temperature Stefan’s law: P = AeT4. : Stefan-Boltzmann constant = x 10-8 W/m2·K4; e: the emissivity of the surface. Stefan’s law for a black body: I = T4. The peak of the wavelength distribution shifts to shorter wavelength as the temperature increases. Wien’s displacement law: maxT = x 10-3 m·K. The intensity on the y-axis is the intensity per wavelength. PHY 1371 Dr. Jie Zou

5
**Early attempts of explanation using classical ideas**

Rayleigh-Jeans law: I(, T) = 2ckBT/ 4. At long wavelengths, the Rayleigh-Jeans law is in reasonable agreement with experimental data, but at short wavelengths major disagreement is apparent. Ultraviolet catastrophe: the energy emitted by any black body will become infinite in the limit of zero wavelength according to classical theory – a mismatch of theory and experiment. PHY 1371 Dr. Jie Zou

6
**Planck’s theory of black-body radiation**

Planck’s two assumptions concerning the nature of the atomic oscillators: The energy of an oscillator can have only certain discrete values En: En = nhf. n: a positive integer, a quantum number that describes an allowed state of a system; f: frequency of oscillation; h: Planck’s constant. Energy is quantized. Quantum state. The oscillators emit or absorb energy when making a transition from one quantum state to another. The entire energy difference in the transition is emitted or absorbed as a single quantum of radiation. Energy-level diagram German Physicist Max Planck PHY 1371 Dr. Jie Zou

7
**An energy-level diagram**

PHY 1371 Dr. Jie Zou

8
**Planck’s theoretical expression for I(, T)**

h: Planck’s constant (a fundamental constant of nature) h = x J·s PHY 1371 Dr. Jie Zou

9
**The photoelectric effect**

Photoelectric effect: Light incident on certain metallic surfaces causes electrons to be emitted from those surfaces. PHY 1371 Dr. Jie Zou

10
**Features of the photoelectric effect**

Dependence of photoelectron kinetic energy on light intensity Experimental result: The maximum kinetic energy of photoelectrons is independent of light intensity. Time interval between incidence of light and ejection of photoelectrons Experimental result: Electrons are emitted from the surface of the metal almost instantaneously, even at very low light intensities. PHY 1371 Dr. Jie Zou

11
**Features of the photoelectric effect (Cont.)**

3. Dependence of ejection of electrons on light frequency Experimental result: No electrons are emitted if the incident light frequency falls below some cutoff frequency fc, of which the value depends on the material. 4. Dependence of photoelectron kinetic energy on light frequency Experimental result: The maximum kinetic energy of the photoelectrons increases with increasing frequency. PHY 1371 Dr. Jie Zou

12
**Einstein’s explanation of the photoelectric effect**

Photons: Einstein assumed that light (or any other electromagnetic wave) of frequency f can be considered a stream of quanta, regardless of the source of the radiation. These quanta are called photons. Energy of each photon: E = hf. Einstein’s model of photoelectric effect: A photon of the incident light gives all its energy hf to a single electron in the metal. The energy transfer is accomplished via a one photon-one electron event. PHY 1371 Dr. Jie Zou

13
**The maximum kinetic energy of photoelectrons**

Kmax = hf - : the work function of the metal. The work function represents the minimum energy with which an electron is bound in the metal. Einstein’s model predicts a linear relationship between Kmax and the light frequency f, which is confirmed by experimental observation. Cutoff frequency fc and cutoff wavelength c: fc = /h and c = hc/. Stopping potential Kmax = e Vs. PHY 1371 Dr. Jie Zou

14
**An application of photoelectric effect – the photomultiplier tubes**

PHY 1371 Dr. Jie Zou

15
Homework Ch. 40, P. 1314, Problems: #2, 4, 14. PHY 1371 Dr. Jie Zou

Similar presentations

© 2019 SlidePlayer.com Inc.

All rights reserved.

To make this website work, we log user data and share it with processors. To use this website, you must agree to our Privacy Policy, including cookie policy.

Ads by Google