Presentation is loading. Please wait.

Presentation is loading. Please wait.

Course Name : DESIGN OF MACHINE ELEMENTS

Similar presentations


Presentation on theme: "Course Name : DESIGN OF MACHINE ELEMENTS"— Presentation transcript:

1 Course Name : DESIGN OF MACHINE ELEMENTS
LECTURE #28 MOTION CONTROL Course Name : DESIGN OF MACHINE ELEMENTS Course Number: MET 214

2 Machine systems can operate with intermittent motion
Machine systems can operate with intermittent motion. Starting and stopping operations can cycle frequently. Motion control elements permit machine systems to achieve intermittent motion. Motion Control elements: Clutches: Devices used to transmit power on an intermittent basis by connecting and/or disconnecting a driven component to and/or from the prime mover. Motor operates efficiently at continuous speeds. Avoids accelerating and/or de-accelerating the rotor of the motor each time a driven component of a machine needs to be cycled. Brakes: Device that absorbs the kinetic energy of a system and thus controls the motion of the system by slowing down the system and/or bringing the system to rest. Functions of a clutch: Connect a rapidly turning shaft to one that is initially stationary. Cause two shafts to turn at the same speed and to do so in a manner that shock is not produced. Limit torque that is transmitted or to prevent torque from being transmitted in a reverse direction.

3 Types of clutches: Positive contact Square Jaw Spiral Jaw Friction clutches Plate Cone

4 Positive Contact Clutches:
Transmits power from the driving shaft to the driven shaft by means of jaws or teeth. Advantages No slip operation Develop very little heat since they do not depend on friction Generally lighter and less costly than a friction clutch of similar torque capacity Disadvantages Cannot be engaged at high speeds Shock accompanies engagement at any speed When both driven and drive shafts are at rest, some relative motion may be required to engage. Disc clutch:

5 Disc Clutch Transmits torque from the input shaft to the output shaft due to the friction force developed between the two plates or discs. Input disc is free to move axially along the shaft but is splined, or keyed to shaft so disc will rotate with shaft. The friction force that can be transmitted depends on axial force developed between discs. Axial force can be applied in several ways. Mechanical means Levers Springs linkages Hydraulic or pneumatic Electro-magnetic means Advantages Very little shock during engagement due to slippage Can be used for high speed engagements. Disadvantages Slippages not suitable for applications that require positive transmission wear

6 If the discs or plates used in the clutch are relatively flexible, it is possible to obtain relatively uniform pressure on the friction surfaces when the actuating forces presses the disc together. If the plates are relatively rigid, the wearing of the friction surface is approximately uniform after an initial wearing-in has taken place. When analyzing the clutch, either the assumption of uniform wear or uniform pressure must be made. A conservative approach is to design with the assumption of uniform wear. wear may be assumed to be directly proportional to pressure and velocity at a particular point on the plate of the clutch. Recall velocity is proportional to the radius. Accordingly Uniform wear implies local pressure P times r is constant. Where Wear Proportionality Constant Local Pressure radius to arbitrary point on disc Under the assumption of uniform wear, the product of pressure and radius is a constant proportionality constant Accordingly the maximum pressure must occur at the minimum radius. K=pr = pmax ri => p=pmax Note: If disc or plates used in clutch are relatively flexible, it is possible to obtain relatively uniform pressure on the friction surfaces. Alternatively, if the plates are rigid, the wearing of the plates is relatively uniform after an initial wearing of the friction surface. Since W and k both are constants Since pr=k, as r increases then p decreases Alternatively as r decreases, p increases.

7 Solving for P from the above equation Pressure varies from a max at to a minimum at where Outer Radius For the case of uniform wear, the following relationship exists between the activation force and the pressure existing at The torque that can be transmitted by a disc type of clutch can also be related to the activating force. For the case of uniform wear. The frictional torque for the elemental annular area must be integrated over the area of the dics. Actuating force = force pressing the two discs together Actuating force is normal to the friction surface. It can be obtained by multiplying the pressure between the friction surfaces by the area of the surfaces – since pressure varies with ri we must integrate to obtain F. f=coefficient of friction

8 Brake and Clutch Material Properties
Maximum Drum Temperature, 0F Coefficients of friction, f Maximum Allowable Pressure, psi Metal on metal 0.25 Wood on metal 200 50-90 Leather on metal 15-40 Molded Blocks Asbestos on metal in oil 500 50-150 Sintered metal on cast iron in oil 450 0.2 400

9 Example : A single plate disc clutch, with both sides effective, is to be used in an automobile. The friction material that the clutch is made of has a coefficient of friction of 0.3 and a maximum allowable pressure 15 psi. If the outside radius of the clutch is 10 in., and the inside radius is 8 in., determine the torque that can be transmitted and the actuating force required of the springs. Solving for torque on a single side Torque transmitted for 2 sides Actuating force required to transmit torque. Wear rating: The previous relationships concerning the torque that can be transmitted by a clutch involved the mean radius of the disc. The area of the disc did not influence torque. Several different combinations of and can produce the same but different areas. Although the different combinations of and lead to the same and therefore are capable of transmitting the same level of torque, the difference in the areas will effect the rate at which the disc wears and/or the amount of power that can be accommodated with a specified wear rate.

10 Where Wear rating Area of friction surface Power transmitted by frictional surfaces of discs Note: for frequent applications, a conservative rating for average service for infrequently used brakes allowed to cord some what between applications amount of torque that can be transmitted by clutch/ brake angular velocity of disc n = speed of rotation in rpm

11 Two approaches are available for establishing the torque requirement demanded from a clutch and/or brake. 1) where Conversion factor for units Power of prime mover Speed of prime mover rpm Service factor based on application Torque level required from clutch 2a) Mass moment of inertia of load presented to motor angular acceleration rad/sec2 For constant α, α=∆ / ∆t w= angular speed rads/sec equation 2 may be rewritten: 2b)

12 Equation 2b enables the designer to relate the torque required to produce a change in rotational speed ∆ in a given amount of time ∆t, Equation 2b enables the designer to assess the impact of time to start and/or time to stop on the requirements of the clutch. Given Example : Calculate Torque T required to accelerate inertia with specifications given above. T=

13 Energy Absorption/ Heat Dissipation When using a clutch to accelerate an object or a brake to stop a rotating object, heat is generated due to friction. Heat is transferred from the clutch and/or brake to the surroundings and equilibrium temperature is established. Temperature of components can effect life time. The energy to be absorbed or dissipated by the unit on operational cycle is equal to the change in kinetic energy of the components being accelerated or stopped. where energy absorbed or dissipated Mass moment of inertia Initial Angular velocity Final Angular velocity Change in Kinetic energy

14 Cone Clutch: Cone clutches have the advantage of being able to transmit a larger torque than disc clutches with the same outside diameter and actuating force. The reason for this capability is the increased frictional area and the wedging action that takes place. Cone clutches find their widest use in relatively low peripheral speed applications.

15 Cone clutch analysis

16 Assuming the friction force is isotropic and acts at the mean radius Substituting for N from above expression Compute the axial force required for a cone brake if it is to exert a braking torque of 50 lb-ft. The mean radius of the cone is 5.0 in. Use f=.25. Try cone angles of 100, 120 and 150 α Fa


Download ppt "Course Name : DESIGN OF MACHINE ELEMENTS"

Similar presentations


Ads by Google