Presentation is loading. Please wait.

Presentation is loading. Please wait.

BELT AND CHAIN DRIVES II Lecture #8 Course Name : DESIGN OF MACHINE ELEMENTS Course Number: MET 214.

Similar presentations


Presentation on theme: "BELT AND CHAIN DRIVES II Lecture #8 Course Name : DESIGN OF MACHINE ELEMENTS Course Number: MET 214."— Presentation transcript:

1 BELT AND CHAIN DRIVES II Lecture #8 Course Name : DESIGN OF MACHINE ELEMENTS Course Number: MET 214

2 To identify the relationships existing between belt forces (tension in the belt) and the torques applied to the pulleys of a belt drive system operating in the steady state, consider initially the situation shown below. Q: How can the tension existing in the belt shown above be increased? Q: Why is the amount of belt tension important in pulley applications? Q: When the pulleys are stationary, is the belt tension the same throughout the entire belt?

3 In order to systematize the issues involved in the use of a belt drive system, the figure shown below will serve as a point of reference for the ensuing discussion.

4 Using the figure in the previous slide as a reference, note that the motor is the power source for driving the load labeled as load A. To transfer power to the load A, the motor must apply power to shaft #1. Since the motor supplies power to shaft #1, power from the motor is positive and the direction of rotation of the motor is in the same direction as the torque that the motor applies to shaft #1 for reasons discussed in a previous lecture. Note: Shaft #1 is rigid, and pulley #1 is affixed to shaft #1, (not shown in detail). Since shaft #1 is rigid, shaft #1 will transfer the torque that the motor applies to shaft #1 to pulley #1 causing pulley #1 to rotate in the same direction as the motor. Since pulley #1 and the motor are all connected by shaft #1, pulley #1 and shaft #1 rotate with the same speed as the motor and in the same direction as the motor.

5

6

7

8

9

10 It must be noted that the direction of rotation of shaft #2 is in the same direction as the torque that pulley #2 applies to shaft #2 Accordingly, pulley #2 transfers positive power to shaft #2. In essence, pulley #2 is functioning as a power source for shaft #2. Since the load A applies a torque to shaft #2 that is in a direction opposite to the direction of rotation of shaft #2, in order to maintain a balance of torques acting on shaft #2,load A has a negative algebraic sign associated with power and therefore load A is removing power from shaft #2. In order to simplify the process of determining the direction of torque that the pulleys and/or loads apply to the shafts in a belt drive systems, a few terms will be defined, and a brief discussion of how to apply the principles associated with the new terms will be provided. When a pair of pulleys are connected by a belt, one of the pulleys is to be considered the driver pulley and the other pulley is to be considered the driven pulley. The driver pulley of a pair of pulleys is the pulley that is “closest” to the motor. The pulley “closest” to the motor is determined by counting the number of components that are involved in transferring back to the motor through the system from the pulley in question. The pulley of the pair that requires the least number of component transfers in order to transfer through the system back to the motor is the pulley that is “closest” to the motor and therefore is the driver pulley of the pair. In the system shown previously, pulley #1 is the driver pulley. The driven pulley of a pair is the pulley that is not the driver. In the system shown previously, pulley #2 was the driven pulley.

11 It must be noted that the direction of rotation of shaft #2 is in the same direction as the torque that pulley #2 applies to shaft #2 Accordingly, pulley #2 transfers positive power to shaft #2. In essence, pulley #2 is functioning as a power source for shaft #2. Since the load A applies a torque to shaft #2 that is in a direction opposite to the direction of rotation of shaft #2, in order to maintain a balance of torques acting on shaft #2,load A has a negative algebraic sign associated with power and therefore load A is removing power from shaft #2. A power balance can be written for shaft #2. Since the power balance for shaft #2 is similar to the balance for shaft #1, the balance for shaft #2 will not be presented, but is left as an exercise. Determination of tight side and slack side of a belt: The direction of rotation of the driver pulley can be used to identify the tight side and slack side of a belt. The direction of rotation of the driver pulley “pulls” on the tight side and pushes on the slack side. Assuming the driver pulley is labeled with an arrow that represents the direction of rotation of the driver pulley, the tail of the arrow will align with the tight side and the tip of the arrow will point in the direction of the slack side of the belt assuming the arrow overlaps the portion of the belt that is in contact with the pulley.

12 After establishing which pulleys are driver pulleys and which pulleys are driven pulleys in a power transmission system by using the rules provided on a previous slide, the direction of rotation of all pulleys in the system can be determined. When considering a pair of pulleys, the driven pulley will rotate in the same direction as the driver pulley. The driver pulley of a pair of pulleys will rotate in the same direction as the torque that is applied to the shaft of the driver pulley by the component supplying power to the shaft. Recall that pulley #1 rotates in the same direction as the motor rotates, which is the same direction of the torque that the motor applies to shaft #1 in the system shown previously. After determining the direction of rotation of all pulleys, apply the following rules. If a pulley is a driver pulley, the direction of the torque that the driver pulley will apply to the shaft is in a direction that is opposite to the direction of rotation of the shaft. If a pulley is a driven pulley, the direction of the torque that the driven pulley will apply to the shaft is in the same direction as the direction of rotation of the driven pulley. As is readily apparent, using the rules associated with driver and driven pulleys is much simpler than using Newton’s 3 rd law to determine the direction of torques that pulleys apply to a shaft.

13 Reinforcement: The driver pulley of a pair of pulleys is the pulley that removes (receives) power from the shaft that it is connected to. The driver pulley transfers the power received from the shaft to another pulley, referred to as the driven pulley, by a belt connecting the driver pulley to the driven pulley. The driven pulley receives power from the driver pulley through the belt and transfers (supplies) the power to the shaft connected to the driven pulley. In the process of transferring power from one pulley to another pulley of a pulley pair, the driver pulley receives (removes) power from the shaft connected to the driver pulley. The driven pulley supplies power to the shaft connected to the driven pulley. Since the driven pulley supplies power to the shaft connected to the driven pulley, the driven pulley is functioning in the capacity of the power source for shaft connected to the driven pulley. In essence, the driven pulley becomes the source of power for the shaft connected to the driven pulley. Direction of Rotation: The driver pulley rotates in the same direction as the torque that is applied to the shaft of the driver pulley by the component that is supplying power to the shaft. The driven pulley rotates in the same direction as the driver pulley.

14 Accordingly, the following relationship exists between torque T and the difference F T - F S whereTorque being applied to shaft A to establish pulley A as drive pulley Tension in belt on tight side Tension in belt on slack side Diameter of pulley A

15 Reaction torque on shafts due to pulleys A) Reaction torque on a shaft due to the driver pulley is in the direction opposite to the direction of rotation of the driver pulley.

16 Reaction torque on shaft connected to driven pulley is in the same direction as the direction of rotation of the driven pulley.

17

18 As established as part of the discussion concerning belt drives, the torque applied to a pulley and the pulling force exerted by a belt on the pulley are related as follows T A = (F T – F S ) T A =F p Where F p pulling force on belt F p = F T – F S F T tight side tension F S slack side tension D A diameter of pulley attached to shaft Since the tight side tension and the slack side tension exist in combination, it is necessary to consider the sum of the tight side tension and the slack side tension since this combination of tensions produces a bending force on the shaft connected to the pulley. The bending force resulting from the combination of tight side and slack side tensions leads to shaft deflection and/or bending stresses in the shaft. The bending force due to belt tensions in a belt drive system is calculated as follows F b = F T + F S F b = bending force for use in shear and moment diagrams In order to calculate bending force F b, additional information concerning the force system in the belt is needed since there are two unknowns and only one equation.

19 For the purposes of this class, the approach for determining bending forces will follow the procedure used in the book by Mott. To determine the bending force F b a second equation involving F T and F S is needed so that the two unknowns, F T and F S can be solved by using two equations. The ratio of the tight side tension to the slack side tension will be assumed to be a known value stated in any problem. The ratio will be the second equation need to solve for both unknowns. Where C = 5 is standard, however some sources report that C can vary from 2 to 5. The ratio of the tight side tension to the slack side tension can be used with the pulley force F p to solve for F T and F S as shown below F p = F T - F S =  F T = CF S (CF S -F S ) = F S =  F T = CF S =

20 F b = F S + F T = + F b = F b = F p > 1 for any C from 2 to 5, so F b > F p F b will be used to create shear and moment diagrams. Shear and moment diagrams will be used in conjunction with torque diagrams to determine shaft size using the 1927 standard.

21

22


Download ppt "BELT AND CHAIN DRIVES II Lecture #8 Course Name : DESIGN OF MACHINE ELEMENTS Course Number: MET 214."

Similar presentations


Ads by Google