Presentation is loading. Please wait.

Presentation is loading. Please wait.

Tidal Modulation of Stick-Slip Ice Stream Motion

Similar presentations


Presentation on theme: "Tidal Modulation of Stick-Slip Ice Stream Motion"— Presentation transcript:

1 Tidal Modulation of Stick-Slip Ice Stream Motion
Update Tidal Modulation of Stick-Slip Ice Stream Motion R. A. Bindschadler M.King P. Vornberger S. Anandakrishnan I. Joughin D. Voigt R. A. Alley We acknowledge NSF OPP for their financial and logistic support

2 2003-2004 Field Season Old 21 GPS stations
5 reference (for differential sol’n) 4 floating (for tides) 15 sec. sampling 7 seismic networks (triggered) 1 tiltmeter 1 winterover station 70+ DAYS OF DATA

3 Whillans Ice Stream Stick-slip
Old Whillans Ice Stream Stick-slip Only Ross ice stream that exhibits stick slip 5 min positions B010

4 Spring and NeapTides Update
73-day record has multiple spring-neap cycles Spring tide intervals (shaded) defined as cycles of single component and high amplitude tide

5 Event and Interval Definition
Update Event and Interval Definition 138 events picked from 30-min. running avg. ~12-hr intervals defined by midpoints between events

6 ~90% of motion occurs during slip events
Update Slip vs. Total Motion ~90% of motion occurs during slip events High position errors

7 ~15% faster during spring tides
Update Spring vs. Neap Speed ~15% faster during spring tides

8 Old Tidal Correlation Maximum 5-min displacement correlates with tidal magnitude (spring vs. neap) Motion BFLT Tide B010 BFLT

9 Slip Characteristics Position 30 minute slip slope= max. speed 12 hour
total Time

10 Higher average speed during spring tides
Update Spring vs. Neap Slips Position Spring tide slip Higher average speed during spring tides Higher maximum speed Neap tide slip Time

11 Update Actual example Spring slip Neap slip

12 Preliminary Findings Old Maximum slip magnitude decreases upstream
Tidal modulation occurs at least as far upstream as B190 Increasing upstream distance BFLT B010 B090 B140 B190 B320

13 How does B090 compare with B010?
BFLT

14 Slip vs. Total Motion (B090)
Update Slip vs. Total Motion (B090) ~70% of B090 motion occurs during slip events (90% for B010) High position errors

15 Spring vs. Neap Speed (B090)
Update Spring vs. Neap Speed (B090) ~6% faster during spring tides (15% for B010)

16 Longer delays during neap tide
Update Event propagation Longer delays during neap tide

17 Update Slip Origin? B190 B140 B090 B010

18 Simple Stick-slip Model
Old Simple Stick-slip Model Ice stream pushes Tide resists Stress drop = .3 kPa H = 750 m L = 100 km tyield = 4 kPa

19 Re-examine Model Parameters
Update Re-examine Model Parameters k/g is relative importance of ice stream loading vs. tidal influence Model has the form Can examine stress buildup between events to find temporal variation of stress drop for each event and relative strength of ice stream loading

20 Previously: Stress drop = 0.3 F = .51 Revised: Stress drop = 0.25 F = .49

21 Model Prediction Update model observation
Spacing is generally correct, but timing is sometimes wrong

22 Continuing Research Examine data from other Whillans Ice Stream sites Next field season ( ) Detailed study of Whillans Ice Stream 30+ GPS sites Seismic experiments on ice plain Both seasons Final field season ( ) Detailed study of Ice Stream D

23 Update Conclusions Whillans Ice Stream is the only Ross ice stream that exhibits stick-slip motion Slip origins appear to have a persistent location at or near north margin Slip accounts for majority of motion ~90% at B010; ~70% at B090 Spring-tide speed faster than neap-tide speed ~15% faster at B010; ~6% faster at B090 Spring-tide slips more impulsive than neap-tide slips

24 Thank you

25 Outline Only Whillans Ice Stream
Further characteristics of stick-slip motion

26 Ross Ice Streams A Whillans C D Ross E Ice Shelf Transantarctic
Mountains Whillans Byrd C Crary Ice Rise D Siple Dome Ross Ice Shelf E Roosevelt Island

27 Preliminary Findings Old Timing Slips not evident at B320
Events occur at very similar times Events take <15 minutes to propagate to all stations Slips last 5-20 minutes Increasing upstream distance Slip Initiation BFLT B010 B090 B140 B190 B320 Floating site

28 Movie of Stick-Slip Events

29 Simple Stick-slip Model
Old Simple Stick-slip Model : stored elastic strain to : minimum basal stress h: tide amplitude: 1 meter =10 kPa stress E: Young’s Modulus Ice Stream pushes E HV L2 (tyield – to) P 2 = 2 events per tidal period, P H = 750 m L = 100 km tyield = 4 kPa Calculate stress drop where


Download ppt "Tidal Modulation of Stick-Slip Ice Stream Motion"

Similar presentations


Ads by Google