Presentation is loading. Please wait.

Presentation is loading. Please wait.

System Implementation and Monitoring Regional Session Spring 2015 #SPRINGSIMK12

Similar presentations


Presentation on theme: "System Implementation and Monitoring Regional Session Spring 2015 #SPRINGSIMK12"— Presentation transcript:

1 System Implementation and Monitoring Regional Session Spring 2015 http://sim.abel.yorku.ca #SPRINGSIMK12 #SIMK12 @lnssim

2

3 TWEET WITH US #SPRINGSIMK12 #SIMK12 @ LNSSIM

4 K-12 SIM SITE http://sim.abel.yorku.ca http://sim.abel.yorku.ca

5 SIM K-12 REGIONAL SESSION RESOURCES Hover over SIM K-12 Resources Click on session you wish to view http://sim.abel.yorku.ca Hover over SIM 2014-2015

6 Purpose of SIMK-12 System Implementation and Monitoring The goal of the SIMK-12 sessions is to support superintendents with responsibility for schools in the implementation of the Board Improvement Plan for Student Achievement (BIPSA) in their schools.

7 Learning What evidence do you have that learning has occurred for members of your team and the folks that they interact with? Do you have evidence of new practices having made an impact on the urgent student learning need that your goal addressed? Were your strategies the right ones? Were you able to monitor the strategies as you planned? Learning is a process through which experience causes permanent change in knowledge or behaviour. Woolfolk, Winne & Perry, 2012 Learning is a process through which experience causes permanent change in knowledge or behaviour. Woolfolk, Winne & Perry, 2012

8 Overview of Fall and Winter Sessions Morning Minds On – high quality mathematics instruction Video – Dan Meyer Planning for implementation – a look at your goal Improvement mistakes to avoid Implementation challenges Video – Implementation Steps to accomplish your mathematics goal (placemat) Afternoon Mindsets that support implementation Readings Video – Carol Dweck Consolidating your implementation plan Morning The Sign Post Problem Revisit Quality Instruction Mathematics learners’ proficiencies Video – Lucy West Role of mathematics tasks The Chocolate Bar Problem Types of Mathematical Tasks Tasks in the Mathematics Classroom: >Conversation tool >Attributes of a rich task >Work in grade groups: K-2, 3-5, 6-8, 9-12 Afternoon Analysis of Tasks by Teams Sharing of Implementation Steps and Monitoring Actions in Like-Role Groups 2014 2015

9 AGENDAMorning Focus on the Classroom Discourse Component of the Pedagogical System Article Reading and Discussion: Orchestrating Productive Mathematical Discourse Math Problem 5 Practices that Support Deep Mathematical Discourse: Anticipation, Monitoring, Selecting, Sequencing and Connecting Morning Focus on the Classroom Discourse Component of the Pedagogical System Article Reading and Discussion: Orchestrating Productive Mathematical Discourse Math Problem 5 Practices that Support Deep Mathematical Discourse: Anticipation, Monitoring, Selecting, Sequencing and Connecting Afternoon Board Team: Evaluating Learning Related to the Math Goal Like-Role Discussion on Learning Team Time Demonstration of Learn Teach Lead and a New Mathematics App FeedbackAfternoon Board Team: Evaluating Learning Related to the Math Goal Like-Role Discussion on Learning Team Time Demonstration of Learn Teach Lead and a New Mathematics App Feedback

10 Best Evidence Synthesis on Effective Pedagogy in Mathematics Effective mathematical pedagogy is a coherent system rather than a set of discrete, interchangeable strategies. This pedagogical system encompasses: A non-threatening classroom environment Instructional tasks Tools and representations Classroom discourse Effective Pedagogy in Mathematics/Pangarau by Glenda Anthony & Margaret Walshaw, New Zealand (2007)

11

12 It is in the classroom community that students develop the sense of belonging that is essential if they are to engage with mathematics. It is within this community that the teacher creates a space for individual thinking and for collaborative mathematical explorations. Effective Pedagogy in Mathematics/Pangarau by Glenda Anthony & Margaret Walshaw,(2007, page 54) Mathematical Communities of Practice

13 Classroom Discourse: Students Articulating Their Thinking Quality teaching involves socializing students into a larger mathematical world that honours standards of reasoning and rules of practice: The teacher must give each student an opportunity to work through the problem under discussion while simultaneously encouraging each of them to listen to and attend to the solution paths of others, building on each other’s thinking.

14 Students Articulating Their Thinking … Yet she must also actively take a role in making certain that the class gets to the necessary goal: perhaps a particular solution or a certain formulation that will lead to the next step …. Finally, she must find a way to tie together the different approaches to a solution, taking everyone with her. At another level just as important she must get them to see themselves and each other as legitimate contributors to the problem at hand. Effective Pedagogy in Mathematics/Pangarau by Glenda Anthony & Margaret Walshaw, (2007, page 72)

15 Classroom Discourse Orchestrating Productive Mathematical Discussions: Five Practices for Helping Teachers Move Beyond Show and Tell Reading:10 minutes Discussion:20 minutes Read pages 314-322

16 Mathematics Task A friend sends you a letter asking for your help with some mathematics.

17

18

19 Conversation Tool for Reflection on Mathematical Tasks

20 What is the mathematical learning that students will achieve with this task? How does the task build on students’ prior knowledge and experience? Is the task problematic for students? Does the task provide opportunities to “press for understanding”? Does the task allow for multiple tools and representations? Does the task allow for multiple entry points for students? Does the task have the potential to engage students in mathematical thinking? Conversation Tool for Mathematics Tasks

21 Mathematics Tasks and Classroom Discourse Discourse involves asking strategic questions that elicit from students both how a problem was solved and why a particular method was chosen. Students learn to critique their own and others’ ideas and seek out efficient mathematical solutions.

22 Mathematics Tasks and Classroom Discourse The calculational explanation involves explaining how an answer or result was arrived at – the process that was used. Paul Cobb (2006) stated that there are two parts to a mathematical explanation: A conceptual explanation involves explaining why that process was selected – what are the reasons for choosing a particular way. In this way students have to be able to not only perform a mathematical procedure but justify why they have used that particular procedure for a given problem. Retrieved from arb.nzcer.org.nz/strategies/mcd.php

23 “ The solution to a math problem is not a number; it’s an argument, a proof.” Paul Lockhart, page 50, Measurement What does the teacher need to do to promote mathematical discourse in the classroom?

24 From the Professional Standards for Teaching Mathematics Teacher's Role in Discourse The teacher of mathematics should orchestrate discourse by: posing questions and tasks that elicit, engage, and challenge each student's thinking listening carefully to students' ideas asking students to clarify and justify their ideas orally and in writing deciding what to pursue in depth from among the ideas that students bring up during a discussion deciding when and how to attach mathematical notation and language to students' ideas deciding when to provide information, when to clarify an issue, when to model, when to lead, and when to let a student struggle with a difficulty monitoring students' participation in discussions and deciding when and how to encourage each student to participate

25 Mathematical Communities of Practice Conversation Tool Take a moment to review this conversation tool. Consider: How it connects with your discussions so far Use it as a lens for continued reading of the article (coming next) Think about how it might be helpful for classroom observations

26 Orchestrating Productive Mathematical Discussion: Five Practices for Helping Teachers Move Beyond Show and Tell Anticipation: pages 322-326 Sequencing: pages 329-330 Monitoring: pages 326-327 Selecting: pages 327-329 Connecting: pages 330-331 Everyone read: pages 332-335 Continue the reading of the article by selecting one of the following sections :

27 Group Sharing of 5 Practices Each person at the table should highlight one or two main ideas from the practice that they read about. Approximately 1 minute per person!

28 Deconstructing the Discourse As you listen to the deconstruction discussion, think about: Which elements of the conversation tool you observed and which ones were not evident? Which elements of the five practices you observed and which ones were not evident? If this was a class that you observed, how would you start a conversation with the teacher of this class?

29 Do the problem yourself to determine the strategies students are likely to use. Will this problem be the most useful in addressing the mathematics? Think about how to respond to the work that students are likely to produce. Analyze the curriculum as a continuum and examine professional resources (e.g. learning trajectories) to inform this practice. Smith & Stein (2011) Anticipating

30 Listen, observe, identify key strategies Keep track of approaches Ask questions of students to get them back on track or to think more deeply Ensure that student thinking is visible Smith & Stein (2011) Monitoring

31 CRUCIAL STEP – What do you want to highlight? Purposefully select those that will advance mathematical ideas, strategies, and use of tools. Smith & Stein (2011 ) Selecting

32 In what order do you want to present the student work samples? Do you want the most common? Present misconceptions first? How will students share their work? Draw on board? Put under document camera? Smith & Stein (2011) Sequencing

33 Craft questions to make the mathematics visible Compare and contrast 2 or 3 students’ work – what are the mathematical relationships? What do parts of students’ work represent in the original problem? The solution? Work done in the past? Smith & Stein (2011) Connecting

34

35 MR. LIM: MATH TALK

36 Evaluating Your Learning in Board/FOS Teams 1.How has your SIM Math Goal evolved over this past year? 2. What KEY strategies/actions have you been implementing in service of this goal? Do you have evidence of new practices having made an impact on the urgent student learning need that your goal addressed? Were your strategies the right ones? 1.How has your SIM Math Goal evolved over this past year? 2. What KEY strategies/actions have you been implementing in service of this goal? Do you have evidence of new practices having made an impact on the urgent student learning need that your goal addressed? Were your strategies the right ones? 3.How did you monitor this work from the perspective of your role? Consider your data, analysis of the data and how it informed your decision making. Were you able to monitor the strategies as you planned? 4.What is the evidence of your successes and challenges throughout the system? 5.How has your SIM team “in between work” evolved over this past year? 3.How did you monitor this work from the perspective of your role? Consider your data, analysis of the data and how it informed your decision making. Were you able to monitor the strategies as you planned? 4.What is the evidence of your successes and challenges throughout the system? 5.How has your SIM team “in between work” evolved over this past year? Consider the questions below :

37 Like-Role Discussion on Learning 1.With evidence (e.g., artefacts, data), explain how you have monitored your learning and the learning of others, throughout the planning and the implementation of your SIM Math Goal. 2.Share a pivotal moment from your learning. How has this pivotal moment changed your subsequent thinking and/or practice? What specific evidence do you have regarding this change in your thinking and/or practice? Discuss your own learning and the learning within your sphere of influence.

38 Breakout Rooms WHOWHERE Superintendents Principal/Vice-Principals Board Office Staff Classroom Teachers

39 Team Consolidation 1.Highlight KEY findings from the “Like-Role” discussions. 2.Reflecting on today’s learning, what might you Start, Stop & Continue in relation to your Math Action Plan? 3.As a SIM team, how will we continue to Scale Up (depth, sustainability, spread and ownership) the learning across the system?

40 Learn Teach Lead & New Math Application

41 Feedback Your feedback makes a difference! Please fill out your feedback survey.

42 SEE YOU AT THE FALL 2015 SIM

43


Download ppt "System Implementation and Monitoring Regional Session Spring 2015 #SPRINGSIMK12"

Similar presentations


Ads by Google