Presentation is loading. Please wait.

Presentation is loading. Please wait.

ANDRE Pascal Habilitation à diriger les recherches Spécialité: Physique des plasmas et électrotechnique Laboratoires Arc Electrique et Plasmas Thermiques.

Similar presentations


Presentation on theme: "ANDRE Pascal Habilitation à diriger les recherches Spécialité: Physique des plasmas et électrotechnique Laboratoires Arc Electrique et Plasmas Thermiques."— Presentation transcript:

1 ANDRE Pascal Habilitation à diriger les recherches Spécialité: Physique des plasmas et électrotechnique Laboratoires Arc Electrique et Plasmas Thermiques

2 1987 Bac C 1992 DEA de Physique (U.B.P) 1995 D.U. Etude de la composition et des propriétés thermodynamiques des plasmas hors déquilibre thermodynamique Université Blaise Pascal, LAEPT. Directeur de thèse : Pr. A. Lefort 1995-96Post-doc LAEPT Bourse dexcellence régionale 1996-97A.T.E.R. à lU.F.R. sciences (U.B.P.) 1997-01 Maître de Conférences à lU.F.R. Sciences (U.B.P.) en 63 ème section. Licence E.E.A. Curriculum Vitae

3 SODEBOR, EDF (Contrat n°: E8360/AEE 2142 ; terminé en 1998) Real time detection of metallic species and complex organic species in a fluidized bed. GIAT Industries (Contrat n° DCAL/GO/97.505) Experimental and theoretical study of a plasma torch igniting gun propellant. GIAT Industries (Contrat débutant en janvier 2001) Theoretical study of a low energy plasma Groupement détude des fusibles en moyenne tension (Schneider Electric, Alstom, Ferraz Shawmut, EDF) Composition, thermodynamic properties, transport coefficients at thermal equilibrium of Ag, SiO 2 mixture. Industrial Contracts

4 University Collaboration Laboratoire de Sciences des Procédés Céramiques et de Traitement de Surface UMR 6638 du CNRS, Université de Limoges, 123, avenue Albert Thomas, F 87060 LIMOGES CEDEX Calculation of the composition, thermodynamic properties and transport coefficients in plasmas out of thermal equilibrium. A.F. Ioffe Phys.-Techn. Inst. Rus. Acad. Sci. Politechnicheskaya 26, St Petersburg, Russia Experimental and theoretical study of a discharge with non-metallic electrodes.

5 Co-guiding of students Ph.D. (With Prof. A. Lefort) Ondet J. (D.U. 1062, Dec. 98) Pollutants detection with an I.C.P. torch Duffour E. (D.U. 1250, Dec. 00) Plasma interacting with an insulating wall Vacher D. (Juin 02) Pollutants detection with an I.C.P. torch Barbara H. (Juin 02) Continuum radiation Stages de D.E.A. (4) Stages CNAM (3)

6 Publications in international journals with referee: 21: published 2: submit Communications in congress: 18 Industrial reports: 3 Publications

7 Work Organisation ( Directeur A. Lefort) E.T.C. André P. GIAT D.N.M.L.E Shkolnik S. IOFFE I.C.P. André P. Faure G. G.F.M.T. Bussière W. André P. (SPCTS) Composition, Transport Coef. Faure G. Molecular Spectroscopy Bussière W. Instrumentations: Pressure, Optical, Electrical. Picard J.P. Capacitor Bank Duffour E. (LTSP) Molecular Dynamic Measurements Vacher D. ICP Measurements Fluidized-bed Rochette D. (LMA) Modelisation Barbara H. Continuum radiation

8 Plasma : gas high temperature ions, electrons, neutral particles Translational temperature: Electrons mobility >> Heavy species mobility T e- >>T h Boltzmann distribution: Electronic excitation level: T ex Rotational level : T rot Vibrational level: T vib Plasma out of thermal equilibrium. (with SPCTS, Limoges)

9 Plasma out of thermal equilibrium. (with SPCTS, Limoges) Composition calculation (SPCTS, Limoges) 1.Collisionnal radiative model 2.Van de Sanden et al (new function) 3.Potapov (Gibbs Free Energy minimisation) 4.Richley-Tuma (pseudo-kinetic) 5.T* Theorem H de Boltzmann Second law of thermodynamic Gradients, applied forces+Stable in time Gibbs energy minimisation Idem as Giordano Application Plasma Coupled Inductively Discharge with Liquid Non-Metallic Electrodes

10 Transport Coefficients V. Rat : D.U. 5 juillet 2001 à Limoges Bracket Integrals: A, B, A, B Plasma out of thermal equilibrium. (with SPCTS, Limoges)

11 Purposes: Real time detection Avoid calibration Fluidized Bed Characterisation Control of the combustion Applications: Coal thermal power station (EDF) Incinerator Inductively Coupled Plasma

12 ICP (64 MHz) Oven (1000 K) Spectrometer

13 Inductively Coupled Plasma 500 W, (Ar+CuSO 4, 5 H 2 O)1300 W, (Ar+CuSO 4, 5 H 2 O) T e /T h =1T e /T h =1.5

14 Inductively Coupled Plasma Excitational Temperature (510, 515, 521 nm) Thermal non- equilibrium parameter (T e /T h )

15 Inductively Coupled Plasma N 2 /O 2 (% molaire) Measured TemperaturesObtained Temperatures 40/604010 +/- 350 K3800 K 49,6/50,43960 +/- 350 K3900 K 80/204810 +/- 250 KReference Temperature

16 Inductively Coupled Plasma Perspectives: Vacher D.: D.U. Juin 02 Fundamental Energy transfert Fluidized-Bed characterisation (+CNAM) Application Mixture of plastic Animal flour

17 Discharge with Liquid Non-Metallic Electrodes (With Ioffe inst., St Petersbourg) -U0-U0 1 3 2 5 R0R0 4 h L -U 0 1. Metallic current leads 2. Ceramics chutes 3. Tap water streams 4. Moveable probe 5. Discharge plasma Self-maintained discharges Volumetric (diffuse) form Atmospheric pressure Out of thermal equilibrium

18 Spectroscopic Measurements (N 2 C 3 u ) Discharge with Liquid Non-Metallic Electrodes (With Ioffe inst., St Petersbourg)

19 Discharge with Liquid Non-Metallic Electrodes (With Ioffe inst., St Petersbourg) Probe measurements Plasma potential distribution I 65 mA, L 6 mm (cylindrical probe). 1 - Water cathode 2 - Water anode Probe characteristics flat probe faced to the cathode Ion branches of probe characteristics n ions

20 Probe measurements +Microwave sounding n c (1.5 2.0) 10 18 m 3 near the cathode n a (0.9 1.2) 10 18 m 3 near the anode Discharge with Liquid Non-Metallic Electrodes (With Ioffe inst., St Petersbourg)

21 Perspectives Add copper : T ex Electrical conductivity out of thermal equilibrium Heat the water Near the anode : 3.2 Near the cathode: 2.2 Discharge with Liquid Non-Metallic Electrodes (With Ioffe inst., St Petersbourg)

22 Plasma interacting with an insulating wall (with GIAT industries) Purpose: Ignite the propulsive powder by plasma

23 Tests before real bomb tests Axial ProjectionRadial Projection Pressure, Spectroscopy, Current, Tension Plasma interacting with an insulating wall (with GIAT industries)

24 PE; V init = 340 VPOM; V init = 340 V Graphite fractionElectrical set up Plasma interacting with an insulating wall (with GIAT industries)

25 Pressure PE; V init = 340 VPOM; V init = 340 V PE: 1kg/m 3 Plasma interacting with an insulating wall (with GIAT industries)

26 Temperature from copper spectral lines Spectra from 430 to 530 nm. Time ~ 1.14 ms. Temperature: ~7000 K to ~10000 K Plasma interacting with an insulating wall (with GIAT industries)

27 Wall Surface after interaction (M.E.B.) Copper dropletExpansion of Copper PE+Cu (1%); P=1atm. Plasma interacting with an insulating wall (with GIAT industries)

28 Main process during the interaction? Composition of plasma ? Boundary conditions ? Molecular dynamic simulation (D.U. Duffour) All interactions between atoms Plasma interacting with an insulating wall (with GIAT industries)

29 Plasma interacting with an insulating wall (with GIAT industries)

30 Perspectives: Interpretation manipulation UI internal energy U/I electrical conductvity pression, temperature, ablated mass Micro- plasma : air-bag in cars Microwave igniter (GORF) D.M. : pressure, thermal conductivity Torche modelisation Cicuit breakers (GEC Alstom) E. Duffour Plasma interacting with an insulating wall

31 Conclusion Team working together at the LAEPT Contracts from industries Schneider Electric, Alstom, Ferraz Shawmut, GIAT. University Collaborations G.I.S. du Massif Central: Pôle Matériaux (16 laboratories)


Download ppt "ANDRE Pascal Habilitation à diriger les recherches Spécialité: Physique des plasmas et électrotechnique Laboratoires Arc Electrique et Plasmas Thermiques."

Similar presentations


Ads by Google