Presentation is loading. Please wait.

Presentation is loading. Please wait.

Habilitation à diriger les recherches

Similar presentations


Presentation on theme: "Habilitation à diriger les recherches"— Presentation transcript:

1 Habilitation à diriger les recherches
Laboratoires Arc Electrique et Plasmas Thermiques ANDRE Pascal Habilitation à diriger les recherches Spécialité: Physique des plasmas et électrotechnique

2 1997-01 Maître de Conférences
Curriculum Vitae 1987 Bac C 1992 DEA de Physique (U.B.P) D.U. Etude de la composition et des propriétés thermodynamiques des plasmas hors d’équilibre thermodynamique  Université Blaise Pascal, LAEPT. Directeur de thèse : Pr. A. Lefort Post-doc LAEPT Bourse d’excellence régionale A.T.E.R. à l’U.F.R. sciences (U.B.P.) Maître de Conférences à l’U.F.R. Sciences (U.B.P.) en 63ème section. Licence E.E.A.

3 Industrial Contracts SODEBOR, EDF
(Contrat n°: E8360/AEE 2142 ; terminé en 1998)  Real time detection of metallic species and complex organic species in a fluidized bed. GIAT Industries (Contrat n° DCAL/GO/97.505)  Experimental and theoretical study of a plasma torch igniting gun propellant. GIAT Industries (Contrat débutant en janvier 2001)   Theoretical study of a low energy plasma Groupement d’étude des fusibles en moyenne tension (Schneider Electric, Alstom, Ferraz Shawmut, EDF) Composition, thermodynamic properties, transport coefficients at thermal equilibrium of Ag, SiO2 mixture.

4 University Collaboration
Laboratoire de Sciences des Procédés Céramiques et de Traitement de Surface UMR 6638 du CNRS, Université de Limoges, 123, avenue Albert Thomas, F LIMOGES CEDEX Calculation of the composition, thermodynamic properties and transport coefficients in plasmas out of thermal equilibrium. A.F. Ioffe Phys.-Techn. Inst. Rus. Acad. Sci. Politechnicheskaya 26, St Petersburg, Russia Experimental and theoretical study of a discharge with non-metallic electrodes.

5 Co-guiding of students
Ph.D. (With Prof. A. Lefort) Ondet J. (D.U. 1062, Dec. 98) Pollutants detection with an I.C.P. torch Duffour E. (D.U. 1250, Dec. 00) Plasma interacting with an insulating wall Vacher D. (Juin 02) Barbara H. (Juin 02) Continuum radiation Stages de D.E.A. (4) Stages CNAM (3)

6 Publications Publications in international journals with referee: 21: published 2: submit Communications in congress: 18 Industrial reports: 3

7 Work Organisation (Directeur A. Lefort)
E.T.C. André P. GIAT D.N.M.L.E Shkoln’ik S. IOFFE I.C.P. Faure G. G.F.M.T. Bussière W. André P. (SPCTS) Composition, Transport Coef. Molecular Spectroscopy Instrumentations: Pressure, Optical, Electrical. Picard J.P. Capacitor Bank Duffour E. (LTSP) Molecular Dynamic Measurements Vacher D. ICP Measurements Fluidized-bed Rochette D. (LMA) Modelisation Barbara H. Continuum radiation

8 Plasma out of thermal equilibrium. (with SPCTS, Limoges)
gas high temperature ions, electrons, neutral particles Translational temperature: Electrons mobility >> Heavy species mobility Te->>Th Boltzmann distribution: Electronic excitation level: Tex Rotational level : Trot Vibrational level: Tvib

9 Plasma out of thermal equilibrium. (with SPCTS, Limoges)
Composition calculation (SPCTS, Limoges) Collisionnal radiative model Van de Sanden et al (new function) Potapov (Gibbs Free Energy minimisation) Richley-Tuma (pseudo-kinetic) T* Theorem H de Boltzmann Second law of thermodynamic Gradients, applied forces+Stable in time Gibbs energy minimisation Idem as Giordano Application Plasma Coupled Inductively Discharge with Liquid Non-Metallic Electrodes

10 Plasma out of thermal equilibrium.
(with SPCTS, Limoges) Transport Coefficients V. Rat : D.U. 5 juillet 2001 à Limoges Bracket Integrals: A, B, A’, B’

11 Inductively Coupled Plasma
Purposes: Real time detection Avoid calibration Fluidized Bed Characterisation Control of the combustion Applications: Coal thermal power station (EDF) Incinerator

12 Inductively Coupled Plasma
Spectrometer ICP (64 MHz) Oven (1000 K)

13 Inductively Coupled Plasma
500 W, (Ar+CuSO4, 5 H2O) 1300 W, (Ar+CuSO4, 5 H2O) Te/Th=1 Te/Th=1.5

14 Inductively Coupled Plasma
Excitational Temperature (510, 515, 521 nm) Thermal non-equilibrium parameter (Te/Th)

15 Measured Temperatures
Inductively Coupled Plasma N2/O2 (% molaire) Measured Temperatures Obtained Temperatures 40/60 4010 +/- 350 K 3800 K 49,6/50,4 3960 +/- 350 K 3900 K 80/20 4810 +/- 250 K Reference Temperature

16 Inductively Coupled Plasma
Perspectives: Vacher D.: D.U. Juin 02 Fundamental Energy transfert Fluidized-Bed characterisation (+CNAM) Application Mixture of plastic Animal flour

17 Discharge with Liquid Non-Metallic Electrodes
(With Ioffe inst., St Petersbourg) -U0 1 3 2 5 R0 4 h L 1. Metallic current leads 2. Ceramics chutes 3. Tap water streams 4. Moveable probe 5. Discharge plasma Self-maintained discharges Volumetric (diffuse) form Atmospheric pressure Out of thermal equilibrium

18 Discharge with Liquid Non-Metallic Electrodes
(With Ioffe inst., St Petersbourg) Spectroscopic Measurements (N2 C3u )

19 Discharge with Liquid Non-Metallic Electrodes
(With Ioffe inst., St Petersbourg) Probe measurements Plasma potential distribution I65 mA, L6 mm (cylindrical probe). 1 -    Water cathode 2 -     Water anode Probe characteristics flat probe faced to the cathode  Ion branches of probe characteristics nions

20 Discharge with Liquid Non-Metallic Electrodes
(With Ioffe inst., St Petersbourg) Probe measurements +Microwave sounding nc  (1.52.0)1018 m‑3 near the cathode na  (0.91.2)1018 m‑3 near the anode

21 Discharge with Liquid Non-Metallic Electrodes
(With Ioffe inst., St Petersbourg) Near the anode : 3.2 Near the cathode: 2.2 Perspectives Add copper : Tex Electrical conductivity out of thermal equilibrium Heat the water

22 Plasma interacting with an insulating wall
(with GIAT industries) Purpose: Ignite the propulsive powder by plasma

23 Plasma interacting with an insulating wall
(with GIAT industries) Tests before real bomb tests Axial Projection Radial Projection Pressure, Spectroscopy, Current, Tension

24 Plasma interacting with an insulating wall
(with GIAT industries) PE; Vinit = 340 V POM; Vinit= 340 V Graphite fraction Electrical set up

25 Plasma interacting with an insulating wall
(with GIAT industries) PE; Vinit = 340 V POM; Vinit= 340 V Pressure PE: 1kg/m3

26 Plasma interacting with an insulating wall
(with GIAT industries) Temperature from copper spectral lines Spectra from 430 to 530 nm. Time ~ 1.14 ms. Temperature: ~7000 K to ~10000 K

27 Plasma interacting with an insulating wall
(with GIAT industries) Wall Surface after interaction (M.E.B.) Copper droplet Expansion of Copper PE+Cu (1%); P=1atm.

28 Plasma interacting with an insulating wall
(with GIAT industries) Main process during the interaction? Composition of plasma ? Boundary conditions ? Molecular dynamic simulation (D.U. Duffour) All interactions between atoms

29 Plasma interacting with an insulating wall
(with GIAT industries)

30 Plasma interacting with an insulating wall
Perspectives: Interpretation manipulation UI internal energy U/I electrical conductvity pression, temperature, ablated mass Micro- plasma : air-bag in cars Microwave igniter (GORF) D.M. : pressure, thermal conductivity Torche modelisation Cicuit breakers (GEC Alstom) E. Duffour

31 Team working together at the LAEPT
Conclusion Team working together at the LAEPT Contracts from industries Schneider Electric, Alstom, Ferraz Shawmut, GIAT. University Collaborations G.I.S. du Massif Central: Pôle Matériaux (16 laboratories)


Download ppt "Habilitation à diriger les recherches"

Similar presentations


Ads by Google