Presentation is loading. Please wait.

Presentation is loading. Please wait.

Plants Cell cell wall cytoplasm vacuole cell membrane.

Similar presentations


Presentation on theme: "Plants Cell cell wall cytoplasm vacuole cell membrane."— Presentation transcript:

1 Plants Cell cell wall cytoplasm vacuole cell membrane

2 freely permeable so it lets most of molecules to go through
osmosis does not occur cell membrane beneath cell wall selectively permeable cell wall

3  Water Relations of Plant - Turgor plant cell put in distilled water
net water movement into the cell by osmosis plant cell contains solutes water potential lower than pure water vacuole and cytoplasm swells

4 cytoplasm is pushed against cell wall
turgor turgor is present because: cell wall is rigid and strong, cell bursting is prevented hydrostatic pressure develops inside the cell

5 When water potential of cell = water potential of water
tendency of the cell to give out water increases water potential increases When water potential of cell = water potential of water Turgor occur (cell cannot take in any water) the cell is turgid

6 Water Relations of Plant - Plasmolysis
plant cell in concentrated solution The whole phenomenon is called plasmolysis and cell is plasmolysed net water movement out of the cell by osmosis flaccid vacuole and cytoplasm shrink cytoplasm is torn away from cell wall

7 Turgidity of Plant Cells
cell membrane separated from cell wall cell wall cytoplasm vacuole enlarged vacuole very small solution here is the same as the external solution plasmolysed cell (in hypertonic sol) turgid cell (in hypotonic sol.)

8 Cells in Different Solutions
Solution Concentration hypotonic hypertonic animal cells (e.g. RBC) haemolysis shrink plasmolysis (cell is flaccid) plant cells turgid

9 Investigation 11.2 To Investigate the Effects of Sucrose Solution and Tap Water on Epidermal Cells of Red Onion Scale Leaf or Rhoeo Discolor Leaf

10 fleshy scale leaf of red onion bulb
forceps filter paper epidermis What do you observe when the epidermal strip is placed in the concentrated sucrose solution ? Ans: The coloured cytoplasm shrinks.

11 fleshy scale leaf of red onion bulb
forceps filter paper epidermis Explain your observation. Ans: When the piece of epidermis is placed in concentrated solution, cells lose water by osmosis as the cells have a higher water potential than the sugar solution.

12 fleshy scale leaf of red onion bulb
forceps filter paper epidermis What has happened to the cells in tap water ? Ans: The coloured cytoplasm swells and cells become turgid.

13 fleshy scale leaf of red onion bulb
forceps filter paper epidermis Explain your answer. Ans: When the piece of epidermis is placed in tap water, cells gain water by osmosis as the surrounding tap water has a higher water potential than the cells.

14

15 Investigation 11.3 Effects of Concentrated Sucrose Solution and Tap Water on Raw Potato Strips

16 What has happened to the potato strips ?
petri dish water 20% surcose solution raw potato strips A B What has happened to the potato strips ? Ans: Potato strip A increases in both weight and length while potato strip B decreases in both weight and length.

17 petri dish water 20% surcose solution raw potato strips A B Explain your answer. Ans: For potato strip A, it gains water by osmosis so both of its weight and length increase but for potato strip B, it loses water by osmosis so its weight and length decrease.

18 Transpiration an evaporation of water in form of water vapour from the surface of plant to atmosphere it mainly takes place in leaves where there are some openings called stomata

19 more water loses from the lower surface of the leaf than the upper one as more stomata present on the lower surface it also happens in lenticels and cuticle

20 Transpiration in Leaves
a thin film of moisture is covered with each mesophyll cell the moisture evaporates from mesophyll cells into intercellular spaces and diffuses out of stomata into atmosphere

21 water potential of cells losing water decreases so they draw water from deeper cells in the leaf by osmosis. This in turn, draws water in xylem vessels into leaf to replace the loss

22 Experiment to Show that Water is Given Off During Transpiration
Investigation 11.4 Experiment to Show that Water is Given Off During Transpiration

23 What do you observe in the polythene bags ?
Ans: The one enclosing plant A becomes misty while nothing can be noticed in the one enclosing plant B.

24 How can you show that it is water ?
polythene bag A B How can you show that it is water ? Ans: We can use anhydrous cobalt chloride paper to test it. It will turn the paper from blue to pink or we can use anhydrous copper sulphate. Water will turn it from white to blue.

25 What conclusions can you draw from the results ?
polythene bag A B What conclusions can you draw from the results ? Ans: We can conclude that a leafy shoot gives off water during transpiration.

26 To Measure the Rate of Transpiration by Using a Simple Potometer
Investigation 11.5 To Measure the Rate of Transpiration by Using a Simple Potometer

27 graduated capillary tube
air/water meniscus graduated capillary tube reservoir leafy shoot tap What are the environmental conditions under which transpiration occurs quickly ? Ans: It is under dry, warm and windy conditions.

28 graduated capillary tube
air/water meniscus graduated capillary tube reservoir leafy shoot tap Does this apparatus give you an accurate measurement of the rate of transpiration ? Ans: No. It is because it only measures the rate of water uptake by the leafy shoot … Ans: In addition, it is too small to fit the whole root system and this may affect the rate of water uptake.

29 graduated capillary tube
air/water meniscus graduated capillary tube reservoir leafy shoot tap Sometimes you may introduce an air bubble into the capillary tube. State the advantage of this method. Ans: Movement of the air bubble is easier to observe than that of air/water meniscus.

30 graduated capillary tube
air/water meniscus graduated capillary tube reservoir leafy shoot tap Sometimes you may introduce an air bubble into the capillary tube. State the disadvantage of this method. Ans: Friction between the capillary wall and the bubble may affect the movement of bubble.

31 Environmental Factors Affecting the Rate of Transpiration
There are five environmental factors which affect the rate of transpiration. They are: (I) Light Intensity (II) Temperature (III) Humidity (IV) Wind Speed (V) Water Supply

32 Light Intensity stomata open in light, so plants can get enough carbon dioxide from atmosphere for carrying out photosynthesis light will increase temperature so increases the rate of transpiration

33 Temperature rate of evaporation of water from mesophyll cells
relative humidity of air outside leaf rate of diffusion of water vapour from intercellular space in leaf to outside

34  Humidity humidity outside rate of transpiration
it makes the diffusion gradient of water vapour from moist intercellular space of a leaf to the external atmosphere steeper

35 Wind Speed & Water Supply
wind blows lack of water water vapour around the leaf sweeps away soil dries, plant wilts and stomata close transpiration rate transpiration rate INCREASES DECREASES

36 Stomata stomata are pores in the epidermis which gaseous exchange takes place during photosynthesis (or respiration) find mainly in lower epidermis of dicotyledonous leaves and stems

37 Guard Cells each stomata is surrounded by two guard cells which possess chloroplasts its inner wall is thicker than outer wall it is kidney-shaped stoma guard cell

38 Distribution of Stomata in Leaves
normal plants mainly on the lower surface of leaves floating plants mainly on the upper surface leaves may also have air sacs to keep them afloat so they can carry out gaseous exchange

39 submerged aquatic plants
no stomata (not required since gaseous exchange can be carried out by diffusion though the leave surface) no cuticle (the primary function of cuticle is to prevent excess water transpiration which is not present in aquatic plants)

40 Investigation 11.6 Experiment to Investigate Stomatal Distribution in a Leaf by Using Cobalt Chloride Paper

41 Obtain a potted plant. Using sellotape stick a small square
cobalt chloride paper sellotape Obtain a potted plant. Using sellotape stick a small square of anhydrous cobalt chloride paper onto each surface of a leaf of the plant. Record the time taken for the cobalt chloride paper on each surface of the leaf to turn pink.

42 Which piece of cobalt chloride paper turns pink first?
sellotape Which piece of cobalt chloride paper turns pink first? Ans: The piece of cobalt chloride paper attached to the lower epidermis of the leaf turns pink first.

43 Ans: It is because more stomata are present in the lower epidermis.
cobalt chloride paper sellotape Explain your answer. Ans: It is because more stomata are present in the lower epidermis.

44 Why is it important to handle cobalt chloride paper with forceps?
sellotape Why is it important to handle cobalt chloride paper with forceps? Ans: It is because there is moisture on human fingers so the paper may turn pink before sticking onto the surfaces of leaves.

45 To Observe the Release of Air Bubbles from Leaves placed in Hot Water
Investigation 11.7 To Observe the Release of Air Bubbles from Leaves placed in Hot Water

46 Which surface has more air bubbles coming off?
forceps hot water leaf Which surface has more air bubbles coming off? Ans: There are more air bubbles appear on the lower surface of the leaf.

47 Where does the air come from?
forceps hot water leaf Where does the air come from? Ans: It is in the air spaces between the mesophyll cells in leaf which expands on heating and passes out through stomata of the leaf.

48 What does the result show?
forceps hot water leaf What does the result show? Ans: The result shows that more stomata are present on the lower epidermis of the leaf.

49

50

51 Structure of Root Root Cap a protective layer at the very tip of root
to protect the delicate cells of root from being damaged as the root grows down through the soil Epidermis cover the rest of root absence of cuticle so water can enter

52 Growing Point behind root cap cells are capable of active division Region of Elongation more elongated than cells in growing point and have large vacuoles

53

54 Region of Root Hair little way behind root tip root hair are thin-walled extension of epidermal cells of root increase surface area for uptake of water and mineral salts

55 Vascular Tissue further from the tip of root contain xylem and phloem xylem transport absorbed water to every part of plant

56

57

58

59 Absorption of Soil Water by Root Hairs
soil water is a dilute solution of salts which is more dilute than cell sap and cytoplasm in root hair water will pass by osmosis into root hair through cell wall and cell membrane

60

61 reduction of effective pressure at the top of xylem vessel
transpiration occurs in leaves so water is continuously removed from the plant reduction of effective pressure at the top of xylem vessel water flows upwards from roots continuously flow of water through plant: transpiration stream tension produced to draw up water: transpiration pull

62 Transverse Transport of Water to Xylem
cytoplasm and cell sap have higher water potential than neighbouring cortical cells epidermal cells gain water by osmosis NOTE: some water may travel inwards along or between cell walls without entering cytoplasm or vacuole of each cortical cell water travels by osmosis inwards from cell to cell

63 ~ End ~

64 Functions of Transport System in Angiosperms
carries water and mineral salts from the roots to the mesophyll cells of the leaves for photosynthesis by xylem

65 carries foods made in the leaves by
carries foods made in the leaves by photosynthesis to other cells of the plant by phloem xylem and phloem are together called vascular bundles

66

67 Arrangement of Conducting Tissues in Angiosperms
in root - close to central position in which xylem is found in the centre in a star-like arrangement and phloem lies between the radial arms of the xylem

68

69 - to resist the strong pulling force from the wind blowing the shoot
in stem - close to the epidermis where the conducting tissues are arranged in a ring near the outside edge, with phloem lying outside and xylem inside

70

71

72

73 in leaves - to resist the strong bending force produced by wind
- vascular bundles are often called veins in which xylem lies above the phloem

74 Xylem consists of long tubular vessels
each vessel is made up of many dead cells which are hollow and joined end to end

75

76 the end walls of the cells have disappeared
the end walls of the cells have disappeared and so a long and open tube is formed xylem vessels run from the root, through the stem and finally branch out into every leaf of the plant

77 xylem vessels contain no cytoplasm or nuclei
to prevent xylem from collapsing, they have thick cell walls made of cellulose and strengthened by rings of a woody substance called lignin

78 Phloem made up of tube cells called sieve tubes which are living cells joined end to end by perforated horizontal walls called sieve plate the perforations allow dissolved substances to flow through them so food made in the leaves can be carried to other parts of the plant

79 sieve tubes contain cytoplasm but no
sieve tubes contain cytoplasm but no nuclei and they do not have lignin in their cell walls each sieve tube has a companion cell next to it. The companion cell does have a nucleus and contain many other organelles

80

81 Comparison between Sieve Tubes and Vessels
living cells dead cells smaller diameter larger diameter walls relatively thin, flexible, composed of cellulose walls relatively thick, hard, strengthened by rings of lignin

82 Comparison between Sieve Tubes and Vessels
the lumens of mature cells are filled with cytoplasm the lumens of mature cells are empty end walls of adjacent sieve tubes from sieve plates end walls of adjacent vessels cells break down

83 Upward Transportation of Water and Mineral Salts
root pressure capillarity by transpiration pull

84 Transpiration Pull most of the water rising up in the xylem of the stem is pulled up by this during transpiration, water is continually removed from the top of xylem vessels to supply cells in the leaves so pressure at the top of xylem reduces and water flows up

85

86 Transport of Organic Nutrients
translocation is the process of transporting the manufactured carbohydrates in photosynthesis via phloem from the leaves to other parts of the plant

87

88 ~ End ~


Download ppt "Plants Cell cell wall cytoplasm vacuole cell membrane."

Similar presentations


Ads by Google