Presentation is loading. Please wait.

Presentation is loading. Please wait.

Unit 8: Thrills & Chills. Essential Questions How are the concepts of velocity and acceleration used when designing a rollercoaster? How does an incline.

Similar presentations


Presentation on theme: "Unit 8: Thrills & Chills. Essential Questions How are the concepts of velocity and acceleration used when designing a rollercoaster? How does an incline."— Presentation transcript:

1 Unit 8: Thrills & Chills

2 Essential Questions How are the concepts of velocity and acceleration used when designing a rollercoaster? How does an incline angle affect the speed at which an object can reach? What is spring potential energy? What is the difference between mass and weight? How does your weight change on a rollercoaster? What are some necessary safety features on a rollercoaster? How is conservation of energy shown in rollercoasters? How are safety and thrills maximized when designing a rollercoaster?

3 Chapter Challenge You will work with a group (maximum 3 people) to design a rollercoaster Decide who your audience is (children, thrill-seekers, squeamish adults, etc.) Must include: 2 hills, 1 horizontal curve Create a model and a poster of your rollercoaster Due date: May 10

4 Day 1: The Big Thrill Learning Objectives: Draw and interpret a top view and a side view of a roller coaster ride Conclude that thrills in roller coaster rides come from accelerations and changes in accelerations Define acceleration as a change in velocity with respect to time and recognize the units of acceleration Be able to measure and calculate velocity and acceleration

5 Starter

6 Starter (cont’d) How high was the tallest roller coaster? Why can steel roller coasters be taller than wooden ones? Which part of the roller coaster produces the loudest screams? Why? Time: 15 minutes

7 Activity 1 In your lab groups, work through part A (#1, 2, 5) and B (#1-5) of “For you to do” (pg. 209) Compare your drawings to other groups in part A Show me your drawings when you finish Time: 30 minutes

8 Homework Read part C & D of “For you to do” Read Physics Talk, pg. 214 Physics to Go, pg. 216 #1, 4, 5

9 Day 2: What Goes Up and What Comes Down Learning Objectives: Measure the speed of an object at the bottom of a ramp Recognize that the speed at the bottom of a ramp is dependent on the initial height of release of the object and independent of the angle of incline of the ramp Complete a graph of speed vs. height of the ramp Define and calculate kinetic and potential energy State the conversion of energy Relate the conservation of energy to a roller coaster ride

10 Starter The steepest angle of descent on a wooden roller coaster is 70° The steepest angle of descent on a steel roller coaster is 90° Which roller coaster will give the biggest thrill between the two? Why? Time: 15 minutes

11 Video

12 Activity 1 Activity B from last lesson Time: 20 minutes

13 Activity 2 We will investigate how the angle and height of release of a marble on a track affects the speed of the marble For you to do, pg. 219 #1 – 5, 8, 9 Research how how a curved track would affect the speed an object can obtain Does height matter? Does the angle matter? Time: 45 minutes Due: Monday, April 22

14 Homework For you to read, pg. 223 Physics to go, pg. 237 #1, 2, 3, 5, 9

15 Day 3: More Energy Learning Objectives: Measure the kinetic energy of a pop-up toy Calculate the spring potential energy from the conservation of energy and using an equation Recognize the general nature of the conservation of energy with heat, sound, chemical, and other forms of energy

16 Starter The concept of a “lift hill” for a roller coaster was developed in 1885. This was the initial hill that began a roller coaster ride. A chain or a cable often pulled up the train to the top of this hill. How does the roller coaster today get up to its highest point? Does it cost more to lift the roller coaster if it is full of people? Time: 15 minutes

17 Video

18 Activity 1 What is kinetic energy? What is gravitational potential energy? Draw a side view of a roller coaster, and label on the diagram where the kinetic and potential energy would be the highest and lowest Time: 10 minutes

19 Activity 2 Read through “What is energy” and create a spider diagram that shows the differences between the different types of energy Time: 15 minutes

20 Activity 3 Complete the “energy in a golf ball” data sheet with your group After doing the 5 trials, calculate the speed at which the baseball hit the ground How will you calculate this? KE = PE (1/2mv 2 KE = PE (1/2mv 2 = mgh) Time: 35 minutes

21 Closing & Homework How do you calculate the speed of an object hitting the ground if you know its PE? For you to read, pg. 234 Reflecting on the Activity and the Challenge, pg. 237 Physics to go, pg. 237 #1, 2, 4, 6, 7

22 Day 4: Your “at rest” Weight (60 min) Learning Objectives: Distinguish between mass and weight Calculate weight in newtons Measure the effect of weight on the stretch of a spring Graph the relationship between weight and stretch of a spring Use a spring to create a scale and explain how Newton’s Second Law is used in the creation of the scale Calculate spring forces using Hooke’s Law

23 Starter A canary and an elephant have enormous differences in weight. The elephant may weigh more than 10,000 times as much as the canary Can you use the same scale to weigh a canary and an elephant? How does a bathroom scale work? Time: 10 min

24 Video

25 Activity 1: Mass and Weight If you were to drop a baseball and a bowling ball off the top of a building, which would land first? Test your answer by dropping two different materials with different masses Explain why you observed what you did (hint: think about acceleration due to gravity) Now, drop a baseball and a piece of paper. Which hits the ground first? Why? Time: 15 minutes

26 Activity 1 (cont’d) Modify the statement “all objects fall at the same acceleration” to account for your observation with the paper. What is the difference between mass and weight? What are the units of measure for each? Time: 15 min

27 Activity 2: The Properties of Springs Work through Part B of “For you to do” with your lab group Time: 30 min MassWeightStretch of SpringWeight /Stretch Data table for #6

28 Homework For you to read, pg. 246 Physics to go, pg. 251 any 3 calculation problems + #10

29 Day 5: Weight on a Roller Coaster Learning Objectives: Recognize that the weight of an object remains the same when the object is at rest or moving at a constant speed Explore the change in apparent weight as an object accelerates up or down Analyze the forces on a mass at rest, moving with constant velocity, or accelerating by drawing the appropriate force vector diagrams Mathematically predict the change in apparent weight as a mass accelerates up or down

30 Starter As the roller coaster moves down that first hill, up the second hill, and then over the top, you feel as if your weight is changing. In roller coaster terms, this is called airtime. It is the feeling of floating when your body rises up out of the seat. Does your weight change when you are riding on a roller coaster? If you were sitting on a bathroom scale, would the scale give us different readings at different places on the roller coaster? Time: 15 minutes

31 Video: Mass vs. Weight

32 Activity 1 Will a spring scale have the same reading with a mass suspended from it when you are moving at a constant speed? Why do you think this? Record your answer. Test your hypothesis by suspending a mass to the spring scale. Move your arm at a constant speed to see what happens to the reading on the scale. Explain what you see in terms of Newton’s First and Second Laws of Motion Draw a force diagram to show the forces that are acting on the mass Time: 15 minutes

33 Activity 2 What do you think will happen to the reading on the spring scale when you accelerate the spring scale up and down? Test your hypothesis and record your observations. You may find a diagram useful. Complete the observation table #7 on pg. 258 Time: 20 minutes

34 Activity 3: Video

35 Activity 3 Create a comic strip that depicts the difference between mass and weight and how they change (if they change) on a roller coaster Time: 30 minutes

36 Homework For you to read, pg. 259 Physics Talk, pg. 260 Physics to go, pg. 263 #1, 3, 4, 7


Download ppt "Unit 8: Thrills & Chills. Essential Questions How are the concepts of velocity and acceleration used when designing a rollercoaster? How does an incline."

Similar presentations


Ads by Google