Presentation is loading. Please wait.

Presentation is loading. Please wait.

Reflection and refraction

Similar presentations


Presentation on theme: "Reflection and refraction"— Presentation transcript:

1 Reflection and refraction
Optics, Eugene Hecht, Chpt. 4

2 Notation Start with propagating waves:
E = E0 cos(kx - wt) and B = B0 cos(kx - wt) Use complex amplitudes (as in ac circuits): E0 cos(kx - wt) = (1/2) (E0 expi(kx - wt) + c.c.) drop (1/2) and c.c. part E = E0 e i(kx - wt) and B = B0 e i(kx - wt) Three waves, Ei, Er, Et Define reflection and transmission coefficients Er = r Ei, Et = t Ei Reflected and transmitted power -- Er2, Et2 Er2 = r2 Ei2, Et2 = t2 Ei2 Reflected power R = r2, transmitted power T = t2 1 r n1 n2 t r2 + t2 = 1

3 Snell’s law Momentum parallel to surface is conserved
no boundary to bounce off ki sin qi = kr sin qr = kt sin qt ni sin qi = nr sin qr = nt sin qt Law of reflection: ni = nr --> qi = qr Law of refraction ni sin qi = nt sin qt qi qr ki kr n1 n2 kt qt

4 Total internal reflection
From high index to low index nt > ni Maximum value of sin qt = 1 Snell’s law: sin qimax = ni / nt < 1 Critical angle: sin qcritical = ni / nt Larger angles: cannot satisfy Snell’s law no transmission total internal reflection Evanescent wave on surface k-vector: kevan = ni ki sin qi > ki nt wavelength: levan = li / sin qi < lt sub-wavelength in medium nt qi qr ki kr ni nt kt qt

5 S and P polarizations General case of reflection and refraction at boundary Different results for different polarizations S-polarization Electric field polarized perpendicular to incidence plane parallel to boundary surface P-polarization Electric field polarized in incidence plane component of E-field perpendicular to boundary surface Boundary

6 E is normal to plane of incidence
Eperpendicular, S-polarization E is parallel to surface No space charge -- Ei + Er = Et Two components of B Perpendicular to surface No magnetic monopoles Bi sin qi + Br sin qr = Bt sin qt Parallel to surface mi = mr = mt -- most materials -Bi cos qi + Br cos qr = -Bt cos qt Need second equation for E B is related to E by B = E/v = nE/c Perpendicular B’s niEi sin qi + nrEr sin qr = ntEt sin qt use Snell’s law -- same as E-field equation Parallel B’s - niEi cos qi + nrEr cos qr = - ntEt cos qt use Snell’s law: rperpendicular = (ni cos qi - nt cos qt) / (ni cos qi + nt cos qt) tperpendicular = (2ni cos qi ) / (ni cos qi + nt cos qt)

7 E is in plane of incidence
Eparallel, P-polarization Two components of E Parallel to surface No space charge Ei cos qi + - Er cos qr = Et cos qt Perpendicular to surface Space charge attenuates Et ni2Ei sin qi + nr2Er sin qr = nt2Et sin qt use Snell’s law niEi + nrEr = ntEt B is parallel to surface Bi + Br = Bt B is related to E by B = E/v = nE/c same as perpendicular E rparallel = (nt cos qi - ni cos qt) / (nt cos qi + ni cos qt) tparallel = (2ni cos qi ) / (nt cos qi + ni cos qt)

8 Normal incidence qi = qr = qt = 0
rnormal = - rparallel = rperpendicular sign difference comes from definition either E or B must flip sign on reflection symmetry property -- propagation reversed Energy flow must reverse: S = e0 c E X B rnormal = (nt - ni) / (ni + nt) tnormal = (2ni) / (ni + nt) Special cases Low to high index ni < nt -- rnormal > 0 (positive) High to low index ni > nt -- rnormal < 0 (negative) tnormal > 1 ??? Energy flow: S = n e0 c2 E2 = n Svacuum (nrr2 + ntt2)/ni = 1 = R2 + T2 Perpendicular Parallel

9 Energy flow -- non-normal incidence
General case energy into boundary surface = energy out A ni cos qi = A nr r2 cos qr + A nt t2 cos qt Reference to input energy 1 = r2 + t2 (nt cos qt / ni cos qi) = R + T T = t2 (nt cos qt / ni cos qi)

10 Reflectivity vs angle Case of external reflection: low to high index, nt > ni rperpendicular = (ni cos qi - nt cos qt) / (ni cos qi + nt cos qt) tperpendicular = (2ni cos qi ) / (ni cos qi + nt cos qt) rparallel = (nt cos qi - ni cos qt) / (nt cos qi + ni cos qt) tparallel = (2ni cos qi ) / (nt cos qi + ni cos qt) Transmissions similar for both polarizations Reflections: Note rperpendicular always negative nt cos qt > ni cos qi rparallel goes to zero, changes sign nt cos qi = ni cos qt 1 r ni , air nt , glass t

11 Reflectivity vs angle Case of internal reflection: high to low index, ni > nt rperpendicular = (ni cos qi - nt cos qt) / (ni cos qi + nt cos qt) tperpendicular = (2ni cos qi ) / (ni cos qi + nt cos qt) rparallel = (nt cos qi - ni cos qt) / (nt cos qi + ni cos qt) tparallel = (2ni cos qi ) / (nt cos qi + ni cos qt) Transmissions similar for both polarizations Reflections: Note rperpendicular always positive nt cos qt < ni cos qi rparallel goes to zero, changes sign nt cos qi = ni cos qt Both cases: r --> 1 above critical angle 1 r t nt , air ni , glass

12 Polarization (Brewster) angle
Reflection --> 0 for one polarization rparallel goes to zero rparallel = (nt cos qi - ni cos qt) / (nt cos qi + ni cos qt) tparallel = (2ni cos qi ) / (nt cos qi + ni cos qt) rparallel = 0 when nt cos qi = ni cos qt Snell’s law gives: tan qi = tan qBrewster = nt / ni rparallel --> 0 tparallel --> ni / nt i r t ni , air nt , glass i r t ni , glass nt , air

13 Phase shifts rperpendicular = (ni cos qi - nt cos qt) / (ni cos qi + nt cos qt) tperpendicular = (2ni cos qi ) / (ni cos qi + nt cos qt) rparallel = (nt cos qi - ni cos qt) / (nt cos qi + ni cos qt) tparallel = (2ni cos qi ) / (nt cos qi + ni cos qt) Phase shifts Both tperpendicular and tparallel always in phase rperpendicular always p phase shift rparallel starts out with 0 phase switches to p beyond Brewster angle Above critical angle nt < ni, both rperpendicular and rparallel have phase shifts Perpendicular Parallel i r t ni , glass nt , air

14 Phase for total internal reflection
Reflectivities rperpendicular = (ni cos qi - nt cos qt) / (ni cos qi + nt cos qt) rparallel = (nt cos qi - ni cos qt) / (nt cos qi + ni cos qt) Replacement for cos qt from Snell’s law Complex reflection coefficients Reflection coefficients

15 total internal reflection
Summary Transmission -- nothing unusual Critical angle: internal reflection = high to low index total internal reflection, evanescent wave Brewster angle: P-polarization no reflection, both internal & external reflection i r t ni , glass nt , air Internal reflection Phase shifts Reflectivity Differential phase total internal reflection


Download ppt "Reflection and refraction"

Similar presentations


Ads by Google