Presentation is loading. Please wait.

Presentation is loading. Please wait.

From Rainbow to the Lonely Runner Daphne Liu Department of Mathematics California State Univ., Los Angeles January 24, 2007.

Similar presentations


Presentation on theme: "From Rainbow to the Lonely Runner Daphne Liu Department of Mathematics California State Univ., Los Angeles January 24, 2007."— Presentation transcript:

1 From Rainbow to the Lonely Runner Daphne Liu Department of Mathematics California State Univ., Los Angeles January 24, 2007

2 Overview: Distance Graphs Fractional Chromatic Number Circular Chromatic Number Lonely Runner Conjecture Plane coloring

3 Plane Coloring Problem Color all the points on the xy-plane so that any two points of unit distance apart get different colors. What is the smallest number of colors needed to accomplish the above ? Seven colors are enough [Moser & Moser, 1968]

4 < 1

5

6 Graphs and Chromatic Number A graph G contains two parts: A proper vertex coloring: Chromatic number of G: Vertices and edges. A function that assigns to each vertex a color so that adjacent vertices receive different colors. The minimum number of colors used in a proper vertex coloring of G.

7 Example

8 At least we need four colors for coloring the plane Assume three colors, red, blue and green, are used. X

9 Known Facts http://www.math.leidenuniv.nl/~naw/serie5/deel01/sep2000/pdf/problemen3.pdf [Moser & Moser, 1968; Hadweiger et al., 1964] [van Luijk, Beukers, Israel, 2001]

10 Circular Chromatic Number Let G be a graph. Let r be a real number and S r be a circle on the xy-plane centered at (0,0) with circumference r. The circular chromatic number of G is the smallest r such that there exists an r-coloring for G. An r-coloring of G is a function f : V(G) => S r such that for adjacent vertices u and v, the circular distance (shorter distance on S r ) between f(u) and f(v) is at least 1.

11 Example, C 5 0 1 2 0.5 1.5 0 0.5 1 1.5 2

12 Known Results: The following hold for any graph G: → 2

13 Distance Graphs Eggleton, Erdős et. al. [1985 – 1987] For a given set D of positive integers, the distance graph G(Z, D) has: Vertices: All integers Z as vertices; Edges: u and v are adjacent ↔ |u - v| є D D = {1, 3, 4} 0 123 4 5678

14 Lonely Runner Conjecture Suppose k runners running on a circular field of circumference r. Suppose each runner keeps a constant speed and all runners have different speeds. A runner is called “lonely” at some moment if he or she has (circular) distance at least r/k apart from all other runners. Conjecture: For each runner, there exists some time that he or she is lonely.

15 Parameter involved in the Lonely Runner Conjecture For any real x, let || x || denote the shortest distance from x to an integer. For instance, ||3.2|| = 0.2 and ||4.9||=0.1. Let D be a set of real numbers, let t be any real number: ||D t|| : = min { || d t ||: d є D}. φ (D) : = sup { || D t ||: t є R}.

16 Example D = {1, 3, 4} (Four runners) ||(1/3) D|| = min {1/3, 0, 1/3} = 0 ||(1/4) D|| = min {1/4, 1/4, 0} = 0 ||(1/7) D|| = min {1/7, 3/7, 3/7} = 1/7 ||(2/7) D|| = min {2/7, 1/7, 1/7} = 1/7 ||(3/7) D|| = min {3/7, 2/7, 2/7} = 2/7 φ (D) = 2/7 [ Chen, J. Number Theory, 1991] ≥ ¼.

17 Wills Conjecture For any D, Wills, Diophantine approximation, in German, 1967. Betke and Wills, 1972. (Confirmed for |D|=3.) Cusick, View obstruction problem, 1973. Cusick and Pomerance, 1984. (Confirmed for |D| ≤ 4.) Bienia et al, View obstruction and the lonely runner, JCT B, 1998. (New name.) Y.-G. Chen, On a conjecture in diophantine approximations, I – IV, J. Number Theory, 1990 &1991. (A more generalized conjecture.)

18 Relations ? Lonely Runner Conjecture Zhu, 2001 Chang, L., Zhu, 1999 L. & Zhu, J. Graph Theory, 2004

19 Density of Sequences w/ Missing Differences Let D be a set of positive integers. Example, D = {1, 4, 5}. “density” of this M(D) is 1/3. A sequence with missing difference of D, denoted by M(D), is one such that the absolute difference of any two terms does not fall not in D. For instance, M(D) = {3, 6, 9, 12, 15, …} μ (D) = maximum density of an M(D). => μ ({1, 4, 5}) = 1/3.

20 Theorem & Conjecture (L & Zhu, 2004, JGT) If D = {a, b, a+b} and gcd(a, b)=1, then [Conj. by Rabinowitz & Proulx, 1985] Example: μ ({3, 5, 8}) = Max{ 2/11, 4/13 } = 4/13 Example: μ ({1, 4, 5}) = Max{ 1/3, 1/3 } = 1/3 M(D) = 0, 2, 4, 6, 13, 15, 17, 19, 26,....

21 Conjecture [L. & Zhu, 2004] Conjecture: If D = {x, y, y-x, y+x} where x=2k+1 and y=2m+1, m > k, gcd(x,y)=1, then Example: μ ({2, 3, 5, 8}) = ?


Download ppt "From Rainbow to the Lonely Runner Daphne Liu Department of Mathematics California State Univ., Los Angeles January 24, 2007."

Similar presentations


Ads by Google