Download presentation

Presentation is loading. Please wait.

Published byShona James Modified about 1 year ago

1
Scott Craig Cody Maher Jesse Ross Brian Vanstratum

2
Problem Statement How much power is in water flow? How do we generate power from water? How much power do we need? The Site Data From the Site Available Power vs. Needed Power

3
Feasibility study Can we make enough power, using this water source, to provide enough energy for one or more homes?

4
Located in Reynolds, GA Is a large pond with a dam on one side Minor Mill Pond is a watershed for Panther Creek and a collection of artesian springs

5
Maximum power from water flow depends on the flow rate and the pressure The pressure is essentially the height the water falls, also called “head” Thus the equation for max power is: P = m dot ρgh, where m dot = mass flow rate and ρgh = water pressure

6
Turbines are used to generate power from water flow and water pressure There are 3 main variations on hydro- turbine design

7
Fully immersed in water Convert water flow to energy Work like a propeller Typically used in high flow/low head situations

8
Operate in air Convert water pressure to energy Driven by high velocity jets of water Typically used in low flow/high head situations

9
Cross-flow turbine Not entirely immersed in water Generally operates like an Impulse Turbine, but also converts water flow to energy Typically used for low head/high flow

10
Blender: 300W Coffee Maker: 800W Washing Machine: 500W Dryer: 5000W Central A/C: 2000 – 5000W Wall A/C: 1000W Typical residential power requirements:

11
Aerial view of the pondView of dam and mill house

12
Minor Mill Pond Spillway One Spillway Two Dam Natural Spillway Runoff

13
Pond sideOpposite side

14
Pond sideOpposite Side

15
The Minor Mill Pond runs to the Patsiliga Creek which then dumps into the Flint River The USGS has two gage stations monitoring flow rate one north of our site and one south of our site By utilizing this data we can roughly estimate the flow from the surrounding tributaries

16
Gage Station Data from the year 2004 The two stations show the average stream flow (Cubic Feet per second) for each month in By taking the difference of flow rates we can determine the tributary contribution. The flow from the Minors Mill Pond will be a fraction of that contribution. We can then generate a fraction that represents the flow contribution from our site based on the flow rate data we collected on September 30 th 2006.

17

18
Average velocity at the surface of the flow To calculate the flow rate we need the average velocity of the flow Neglecting the friction due to air, the velocity at the surface of the flow is the maximum value of the velocity distribution of the centerline of the flow. A look at some hydraulics texts reveals some useful equations…

19
We never measured the grade, S O but by virtue of two equations we can find it.

20

21
Applying same methods from before:

22
In order to minimize environmental effects we only want to use half the flow from spillway two

23

24

25
Determine what we can power with a middle Georgia micro hydro site Very small neighborhood (7500 kW*hr/month) Just one house (1500 kW*hr/month) Preliminary useable power = 1018 kW*hr/month

26
Decision Matrix OptionsCostReliabilityPower GeneratedEnvironmental ImpactTotals *Max Power (Two Feet of Additional Head) *Max Power (Current Head) Spillway 2 Preservation with Renovation Preserving Existing Dams % Reduction in Spillway 2 Flow (Renovation) *Max Power = Closing of Spillway 2 for max flow

27

Similar presentations

© 2016 SlidePlayer.com Inc.

All rights reserved.

Ads by Google