Presentation is loading. Please wait.

Presentation is loading. Please wait.

CRRT Protocol Continuous Renal Replacement Therapy 台大外科部 護理師 蔡壁如.

Similar presentations


Presentation on theme: "CRRT Protocol Continuous Renal Replacement Therapy 台大外科部 護理師 蔡壁如."— Presentation transcript:

1 CRRT Protocol Continuous Renal Replacement Therapy 台大外科部 護理師 蔡壁如

2 Outline History History Indication Indication CRRT Method CRRT Method Ultrafiltration rates Ultrafiltration rates Choice of replacement fluid Choice of replacement fluid Set-up protocol Set-up protocol

3 Thomas Graham, etc. use a semi-permeable membrane to diffuse urea George Haas dialyse a patient during 15 minutes Heparin,an anticoagulant, is available Production of cellophane for filters Willem Kolff makes a rotating drum dialyser First artificial membrane Development of new techniques, i.e. adsorption, plasma exchange, filtration … History

4 Extracorporeal depuration in ICU 1977 : Peter Kramer performs first arterio-venous hemofiltration (CAVH) 1977 : Peter Kramer performs first arterio-venous hemofiltration (CAVH) 1982 : FDA approves the CAVH 1982 : FDA approves the CAVH 1984 : Blood pump circulated remove fluid 1984 : Blood pump circulated remove fluid 1994 : Clinical importance to control fluid balance 1994 : Clinical importance to control fluid balance 1994 The first « automatic » machine is available 1994 The first « automatic » machine is available 2000 : higher flows machines becomes available 2000 : higher flows machines becomes available

5 CAVH

6 Extracorporeal depuration in ICU 1977 : Peter Kramer performs first arterio-venous hemofiltration (CAVH) 1977 : Peter Kramer performs first arterio-venous hemofiltration (CAVH) 1982 : FDA approves the CAVH 1982 : FDA approves the CAVH 1984 : Blood pump circulated remove fluid 1984 : Blood pump circulated remove fluid 1994 : Clinical importance to control fluid balance 1994 : Clinical importance to control fluid balance 1994 The first « automatic » machine is available 1994 The first « automatic » machine is available 2000 : higher flows machines becomes available 2000 : higher flows machines becomes available

7 CVVH

8 Extracorporeal depuration in ICU 1977 : Peter Kramer performs first arterio-venous hemofiltration (CAVH) 1977 : Peter Kramer performs first arterio-venous hemofiltration (CAVH) 1982 : FDA approves the CAVH 1982 : FDA approves the CAVH 1984 : Blood pump circulated remove fluid 1984 : Blood pump circulated remove fluid 1994 : Clinical importance to control fluid balance 1994 : Clinical importance to control fluid balance 1994 The first « automatic » machine is available 1994 The first « automatic » machine is available 2000 : higher flows machines becomes available 2000 : higher flows machines becomes available

9 CRRT

10 Extracorporeal depuration in ICU 1977 : Peter Kramer performs first arterio-venous hemofiltration (CAVH) 1977 : Peter Kramer performs first arterio-venous hemofiltration (CAVH) 1982 : FDA approves the CAVH 1982 : FDA approves the CAVH 1984 : Blood pump circulated remove fluid 1984 : Blood pump circulated remove fluid 1994 : Clinical importance to control fluid balance 1994 : Clinical importance to control fluid balance 1994 The first « automatic » machine is available 1994 The first « automatic » machine is available 2000 : higher flows machines becomes available 2000 : higher flows machines becomes available

11 Automatic CRRT

12 Objectives of extracorporeal depuration in the Intensive Care Units (ICU) With acute renal failure (ARF) function to control patient fluid, acid-base balances to correct electrolytic disorders to remove urea and creatinine to maintain sufficient nutrition to preserve the potential to recover renal Without acute renal failure to reduce the fluid overload to improve cardiac and brain status to remove lactate of major lactic acidosis

13 extracorporeal depuration in NTUH SICU CVS ICU GS ICU CVVH6.2%3.83% H/D5.0%2.97%

14 C.R.R.T. 適應症 1. 急性腎衰竭 1. 急性腎衰竭 2. 急性肺水腫 2. 急性肺水腫 3. 在心臟手術進行期間,避免過量鉀及水份 ( 利用體外血液 循環系統 ) 3. 在心臟手術進行期間,避免過量鉀及水份 ( 利用體外血液 循環系統 ) 4. 嚴重性水腫如;心臟衰竭 (Congestive cardiac failure ), 腎病 綜合症 ( Nephrotic syndrome ) 4. 嚴重性水腫如;心臟衰竭 (Congestive cardiac failure ), 腎病 綜合症 ( Nephrotic syndrome ) 5. 急性呼吸道病症 ( ARDS ) 5. 急性呼吸道病症 ( ARDS ) 6. 藥物中毒 6. 藥物中毒 7. 嚴重乳酸鹽中毒 7. 嚴重乳酸鹽中毒 8. 敗血病休克 ( Septic shock ) : 清除 Cytokines 和 Endotoxin 8. 敗血病休克 ( Septic shock ) : 清除 Cytokines 和 Endotoxin 9. 體溫過高 / 發熱 (Hyperthermia ) 9. 體溫過高 / 發熱 (Hyperthermia ) 10. 橫紋肌溶解 ( Rhabdomyolisis ) 10. 橫紋肌溶解 ( Rhabdomyolisis ) 11. 急性溶血 11. 急性溶血

15 急性腎衰竭治療的終極目標  清除血液中的廢物  回復身體的酸鹼平衡  改正體內電解質不正常情況,特別是血 鉀過高  免除體液過量,較高的體液清除能力, 不能對心血管有太大的壓抑  確保營養支持

16 Hemodialysis anticoagulant Arterial flow Venous flow Fresh dialysate FILTER Blood flow : 200 ~ 250ml/min Dialysate flow : 500 ml/min Duration : 4h Weight loss : 2 ~ 4 L

17 Hemofiltration Hemofiltration = filtration through a strainer blood ultrafiltrate substitution Filter including a semi- permeable membrane

18 What is renal replacement method of first choice for intensive care patients? IHD ( Intermittent hemodialysis ) IHD ( Intermittent hemodialysis ) CRRT ( Continuous renal replacement therapy ) CRRT ( Continuous renal replacement therapy ) SLEDD ( Slow Low-efficient Daily Dialysis ) SLEDD ( Slow Low-efficient Daily Dialysis ) Journal of the American Society of Nephrology, 2001

19 Intermittent H/D

20 IHD compared with CRRT IHDCRRT DiffusiveConvective Low-flux membrane High-flux membrane High dialysate flow Low dialysate flow A few hours per day In theory continuously Technically demanding Technically less demanding Less labor intensive Labor intensive Journal of the American Society of Nephrology, 2001

21 Theoretical Advantage of CRRT Hemodynamic Stability Hemodynamic Stability Recovery of renal function Recovery of renal function Correction of metabolic acidosis Correction of metabolic acidosis Biocompatibility Biocompatibility Correction of malnutrition Correction of malnutrition Better removal of cytokines Better removal of cytokines Solute removal Solute removal Overall outcomes Overall outcomes Journal of the American Society of Nephrology, 2001

22 Disadvantage of CRRT Continuous anticoagulation Continuous anticoagulation Patient immobility Patient immobility Intensive nursing requirements Intensive nursing requirements Increased expense Increased expense Journal of the American Society of Nephrology, 2001

23 SLEDD ( Slow Low-efficient Daily Dialysis ) Fresenius 2008H delivery system Fresenius 2008H delivery system Toray model 2.0 dialyzer Toray model 2.0 dialyzer Double lumen Double lumen Duration : 6 ~ 8 hrs Duration : 6 ~ 8 hrs Blood flow : 200 ml/min Blood flow : 200 ml/min Dialysate flow rate : 300 ml/min Dialysate flow rate : 300 ml/min Dialysate bicarbonate concentration : 30 ~ 35meq/L Dialysate bicarbonate concentration : 30 ~ 35meq/L American Journal of Kidney Disease, 2000

24 SLEDD as an Alternative Low blood flow Low blood flow Low dialysate flow rates Low dialysate flow rates Prolong period of time Prolong period of time ( 6 ~ 12hrs) ( 6 ~ 12hrs) Compared with IHD Hemodynamic stability Better correction of hypervolemia Adequate solute removal Cost lower than CRRT Journal of the American Society of Nephrology, 2001

25 Advantage of SLEDD Less cumbersome technique Less cumbersome technique Patient mobility Patient mobility Decreased requirements for anticoagulation Decreased requirements for anticoagulation Providing similar hemodynamic stability and volume control Providing similar hemodynamic stability and volume control American Journal of Kidney Disease, 2000

26 CVVHD P/D Solution : Dialysate solution P/D Solution : Dialysate solution  35 ~ 45% infused dextrose absorbed through the hemodiafilter  Glucose delivery 5.8 g/hr (P/D 1.5%, rate 1L/hr)  Impact nitrogen and carbohydrate balance Intensive Care Med. 1991, 1995

27 CVVHD Continuous Veno-Venous hemodiafiltration Blood Flow, 200 ml/min ultrafiltration P/D solution dialysate V

28 CVVHD Glucose dynamics during continuous hemodiafiltration Glucose dynamics during continuous hemodiafiltration  Lipogenesis in the liver  Excessive carbon dioxide production   MV (minute ventilation)  Hyperglycemia Preventing glucose overload Preventing glucose overload Dextrose free dialysate Dextrose free dialysate Glucose load from dialysate Glucose load from dialysate Conclusion Conclusion  Dextrose free : loss is small and predictable Intensive Care Med. 1995

29 Ultrafiltration rates ? Recommend 2L per hour or more Recommend 2L per hour or more  20 ml/hr/kg : 41% (survival rate)  35ml/hr/kg : 57%  45ml/hr/kg : 58% High treatment doses might be difficult High treatment doses might be difficult Early start of treatment : improved outcome Early start of treatment : improved outcome Lancet 2000;355:26-30

30 Early and Intensive Continuous Hemofiltration for severe renal failure after cardiac surgery Early : 2.8 days post-op Early : 2.8 days post-op  Too late in the post-op  Leading prolonged and poorly controlled uremia  Restricted nutrition  Volume overload Intensive : 2 L/hr urtrafiltration rate Intensive : 2 L/hr urtrafiltration rate  Limited intensity leading to inferior uremic control with its attendant sequel Actual mortality : 40% vs 66% Actual mortality : 40% vs 66% Ann Thorac Surg 2001

31 Hemofiltration with predilution or postdilution ultrafiltrate Postdilution Predilution anticoagulant FILTRE Arterial flow Venous flow Predilution : Injection before the filter Postdilution : Injection after the filter

32 Double lumen : Re-circulation rate 250cc/min blood flow Subclavian, internal jugular vein < 3% Subclavian, internal jugular vein < 3% Catheter length Catheter length  Femoral vein 24cm : 10% 15cm : 18% 400 c.c/min blood flow  38% in the femoral vein American Journal of Kidney disease, 1996

33 Double lumen : Re-circulation rate 298 c.c/min blood flow Femoral vs Subclavian : 16.1% vs 4.1% Femoral vs Subclavian : 16.1% vs 4.1% Femoral cath 13.5 cm vs 19.5 cm : 22.8 ±3.0% vs12.6 ±1.7% Femoral cath 13.5 cm vs 19.5 cm : 22.8 ±3.0% vs12.6 ±1.7% American Journal of Kidney disease, 1996

34 Choice of replacement fluid Acetate-Based fluids Acetate-Based fluids  Hyperacetatemia  peripheral vasodilator, myocardial depressant effect  Acetate metabolism   oxygen consumption Bicarbonate-Based fluid Bicarbonate-Based fluid   SVR,  CI Lactate-Based fluid Lactate-Based fluid   lactate :  protein catabolism   ADP level and impair oxygen delivery and ventricular function (myocardial depression)  Excessive accumulation of D-lactate   IICP American Journal of Kidney disease, 1996

35 Effects of bicarbonate and lactate-buffered replacement fluids on cardiovascular outcome in CRRT patients Bicarbonate Replacement Fluid : recommended in patients with lactic acidemia and severe liver failure Bicarbonate Replacement Fluid : recommended in patients with lactic acidemia and severe liver failure Improve cardiovascular outcome in critically ill patients with acute renal failure Improve cardiovascular outcome in critically ill patients with acute renal failure International Society of Nephrology 2000 International Society of Nephrology 2000

36 CVVH Solution Formula 品名 Na + Ca ++ Mg ++ Cl - SO 4 = HCO3 - CVVH”A”  CVVH”B”68.7535.4—33.33 Mixture

37 Replacement Fluid : A, B Solution

38 Anticoagulation Heparin free : flush 50 ~ 100 cc N/S Q1h Heparin free : flush 50 ~ 100 cc N/S Q1h Citrate Citrate Heparin : PTT 45 ~ 65 sec Heparin : PTT 45 ~ 65 sec

39 SICU CVVH Protocol Double : R’t Jugular > Femoral Double : R’t Jugular > Femoral Blood Flow : 150 ~ 200 c.c/min Blood Flow : 150 ~ 200 c.c/min UF rate : 1L/hr ~ 2L/hr 視病患而定 UF rate : 1L/hr ~ 2L/hr 視病患而定  Blood Flow : 150 c.c /min 1L/hr  Blood Flow : 200 c.c /min 2L/hr Replacement Fluid : 視脫水多少而定 Replacement Fluid : 視脫水多少而定

40 Roller pump Power Blood flow 加熱袋 主機

41 A B C D artery vein Blood pump Blood flow A,B solution 接頭 Air chamber 接 IV set CRRT 圖解分析

42

43 CRRT

44 Automatic CRRT


Download ppt "CRRT Protocol Continuous Renal Replacement Therapy 台大外科部 護理師 蔡壁如."

Similar presentations


Ads by Google