Download presentation

Presentation is loading. Please wait.

Published byBruno Knotts Modified over 2 years ago

1
Solving Problems Modelled by Triangles

2
PYTHAGORAS Can only occur in a right angled triangle Pythagoras Theorem states: hypotenuse right angle e.g. square root undoes squaring smaller sides should always be smaller than the hypotenuse h 2 = a 2 + b 2 h a b x 7.65 m 11.3 m 9.4 cm y 8.6 cm x 2 = 7.65 2 + 11.3 2 x 2 = 186.2125 x = √186.2125 x = 13.65 m (2 d.p.) 9.4 2 = y 2 + 8.6 2 y 2 + 8.6 2 = 9.4 2 - 8.6 2 y 2 = 9.4 2 – 8.6 2 y 2 = 14.4 y = √14.4 y = 3.79 cm (2 d.p.)

3
TRIGONOMETRY (SIN, COS & TAN) - Label the triangle as follows, according to the angle being used. A Hypotenuse (H) Opposite (O) Adjacent (A) to remember the trig ratios use SOH CAH TOA and the triangles S O HC A HT O A means divide means multiply 1. Calculating Sides 29° e.g. x 7.65 m H O S O H x = sin29 x 7.65 x = 3.71 m (2 d.p.) 50° 6.5 cm h O A T O A h = tan50 x 6.5 h = 7.75 cm (2 d.p.) Always make sure your calculator is set to degrees!!

4
e.g. d 455 m 32° H OS O H d = 455 ÷ sin32 d = 858.62 m (2 d.p.) 2. Calculating Angles -Same method as when calculating sides, except we use inverse trig ratios. A 16.1 mm 23.4 mm e.g. O H S O H sinA = 16.1 ÷ 23.4 sin -1 undoes sin A = sin -1 (16.1 ÷ 23.4) A = 43.5° (1 d.p.) Don’t forget brackets, and fractions can also be used B 2.15 m 4.07 m H A C A H cosB = 2.15 ÷ 4.07 B = cos -1 (2.15 ÷ 4.07) B = 58.1° (1 d.p.)

5
TRIGONOMETRY APPLICATIONS e.g. A ladder 4.7 m long is leaning against a wall. The angle between the wall and ladder is 27°. Draw a diagram and find the height the ladder extends up the wall. e.g. A vertical mast is held by a 48 m long wire. The wire is attached to a point 32 m up the mast. Draw a diagram and find the angle the wire makes with the mast. Wall (x) Ladder (4.7 m) 27° H A C A H x = cos27 x 4.7 x = 4.19 m (2 d.p.) 48 m 32 m A H A C A H cosA = 32 ÷ 48 A = cos -1 (32 ÷ 48) A = 48.2° (1 d.p.)

6
NON-RIGHT ANGLED TRIANGLES 1. Naming Non-right Angled Triangles - Capital letters are used to represent angles - Lower case letters are used to represent sides e.g. Label the following triangle a B C The side opposite the angle is given the same letter as the angle but in lower case. b c A

7
2. Sine Rule a = b = c. SinA SinB SinC a) Calculating Sides e.g. Calculate the length of side p p 6 m 52° 46° To calculate you must have the angle opposite the unknown side. Only 2 parts of the rule are needed to calculate the answer p = 6. Sin52 Sin46 × Sin52 p = 6 × Sin52 Sin46 p = 6.57 m (2 d.p.) Re-label the triangle to help substitute info into the formula A B a b

8
b) Calculating Angles For the statement: 1 = 3 is the reciprocal true? 2 6 Yes as 2 = 6 1 3 Therefore to calculate angles, the Sine Rule is reciprocated so the unknown angle is on top and therefore easier to calculate. a = b = c. SinA SinB SinC SinA = SinB = SinC a b c e.g. Calculate angle θ 7 m 6 m θ 51° Sinθ = Sin51 7 6 To calculate you must have the side opposite the unknown angle × 7 Sinθ = Sin51 × 7 6 θ = sin -1 ( Sin51 × 7) 6 θ = 65.0° (1 d.p.) You must calculate Sin51 before dividing by 6 (cannot use fractions) Re-label the triangle to help substitute info into the formula A B a b

9
Sine Rule Applications e.g. A conveyor belt 22 m in length drops sand onto a cone-shaped heap. The sides of the cone measure 7 m and the cone’s sides make an angle of 32° with the ground. Calculate the angle that the belt makes with the ground (θ), and the diameter of the cone’s base (x). Conveyor belt : 22 m θ 7 m 32° x 148° A a b B Sinθ = Sin148 7 22 × 7 Sinθ = Sin148 × 7 22 θ = sin -1 ( Sin148 × 7) 22 θ = 9.7° (1 d.p.) SinA = SinB = SinC a b c a = b = c. SinA SinB SinC 116°A a b B x = 7. Sin116 Sin32 × Sin116 x = 7 × Sin116 Sin32 x = 11.87 m (2 d.p.)

10
3. Cosine Rule -Used to calculate the third side when two sides and the angle between them (included angle) are known. a 2 = b 2 + c 2 – 2bcCosA a) Calculating Sides e.g. Calculate the length of side x x 37° 13 m 11 m Re-label the triangle to help substitute info into the formula a A b c x 2 = 13 2 + 11 2 – 2×13×11×Cos37 x 2 = 61.59 x = √61.59 x = 7.85 m (2 d.p.) Remember to take square root of whole, not rounded answer

11
b) Calculating Angles - Need to rearrange the formula for calculating sides CosA = b 2 + c 2 – a 2 2bc e.g. Calculate the size of the largest angle P R Q 17 m 24 ma Ab c Re-label the triangle to help substitute info into the formula CosR = 13 2 + 17 2 – 24 2 2×13×17 Watch you follow the BEDMAS laws! CosR = -0.267 Remember to use whole number when taking inverse R = cos -1 (-0.267) R = 105.5° (1 d.p.) 13 m

12
Cosine Rule Applications e.g. A ball is hit a distance of 245 m on a golf hole. The distance from the ball to the hole is 130 m. The angle between the hole and tee (from the ball) is 60 °. Calculate the distance from the tee to the hole (x) and the angle (θ) at which the golfer hit the ball away from the correct direction. Hole 245 m Tee Ball 130 m x θ 60° a A bc a 2 = b 2 + c 2 – 2bcCosA x 2 = 130 2 + 245 2 – 2×130×245×Cos60 x 2 = 45075 x = √45075 x = 212.31 m (2 d.p.) CosA = b 2 + c 2 – a 2 2bc Cosθ = 212.31 2 + 245 2 – 130 2 2×212.31×245 Cosθ = 0.848 θ = cos -1 (0.848) θ = 32.0° (1 d.p.) A a b c Remember to use whole number from previous question!

13
3D FIGURES - Pythagoras and Trigonometry can be used in 3D shapes e.g. Calculate the length of sides x and w and the angles CHE and GCH x w 6 m 7 m H GF E DC BA 5 m x 2 = 5 2 + 6 2 x = √5 2 + 6 2 x = √61 x = 7.8 m (1 d.p.) w 2 = 7 2 + 7.8 2 w = √7 2 + 7.8 2 w = √110 w = 10.5 m (1 d.p.) Make sure you use whole answer for x in calculation O A tanCHE = 5 ÷ 6 CHE = tan -1 (5 ÷ 6) CHE = 39.8° (1 d.p.) T O A O A T O A tanCHE = 7 ÷ 7.8 CHE = tan -1 (7 ÷ 7.8) CHE = 41.9° (1 d.p.)

14
4. Area of a triangle - can be found using trig when two sides and the angle between the sides (included angle) are known Area = ½abSinC e.g. Calculate the following area 52° 89° 8 m 9 m Re-label the triangle to help substitute info into the formula C a b 39° Calculate size of missing angle using geometry (angles in triangle add to 180°) Area = ½×8×9×Sin39 Area = 22.7 m 2 (1 d.p.)

15
Area Applications e.g. A ball is hit a distance of 245 m on a golf hole. The distance from the ball to the hole is 130 m. The angle between the hole and tee (from the ball) is 60 °. Calculate the area contained in between the tee, hole and ball. Hole 245 m Tee Ball 130 m 60° a C b Area = ½×130×245×Sin60 Area = 13791.5 m 2 (1 d.p.) Area = ½abSinC

Similar presentations

OK

Trigonometry Review of Pythagorean Theorem Sine, Cosine, & Tangent Functions Laws of Cosines & Sines.

Trigonometry Review of Pythagorean Theorem Sine, Cosine, & Tangent Functions Laws of Cosines & Sines.

© 2018 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Ppt on australian continent nations Download ppt on soil erosion and conservation Ppt on acute renal failure in pediatrics Ppt on mind reading machine Ppt on study and manufacturing of turbo generator Ppt on urinary catheterization Ppt on understanding by design Ppt on data handling for class 2 Ppt online compressor parts Notebook backgrounds for ppt on social media