Presentation is loading. Please wait.

Presentation is loading. Please wait.

LAW OF SINES: THE AMBIGUOUS CASE. MENTAL DRILL Identify if the given oblique triangle can be solved using the Law of Sines or the Law of Cosines 1. X.

Similar presentations


Presentation on theme: "LAW OF SINES: THE AMBIGUOUS CASE. MENTAL DRILL Identify if the given oblique triangle can be solved using the Law of Sines or the Law of Cosines 1. X."— Presentation transcript:

1 LAW OF SINES: THE AMBIGUOUS CASE

2 MENTAL DRILL Identify if the given oblique triangle can be solved using the Law of Sines or the Law of Cosines 1. X = 21 0, Z = 65 0 and y = s = 73.1, r = and T = a = 78.3, b = 23.5 and c = 36.8 /ctr Law of Sines Law of Cosines

3 AMBIGUOUS Open to various interpretations Having double meaning Difficult to classify, distinguish, or comprehend /ctr

4 RECALL: Opposite sides of angles of a triangle Interior Angles of a Triangle Theorem Triangle Inequality Theorem /ctr

5 RECALL: Oblique Triangles Triangles that do not have right angles (acute or obtuse triangles) /ctr

6 RECALL: LAW OF SINE – 1  sin   1 /ctr

7 RECALL: Sine values of supplementary angles are equal. Example: Sin 80 o = Sin 100 o = /ctr

8 Law of Sines: The Ambiguous Case Given: lengths of two sides and the angle opposite one of them (S-S-A) /ctr

9 Possible Outcomes Case 1: If A is acute and a < b A C B b a c h = b sin A a. If a < b sinA A C B b a c h NO SOLUTION

10 Possible Outcomes Case 1: If A is acute and a < b AC B b a c h = b sin A b. If a = b sinA A C B b = a c h 1 SOLUTION

11 Possible Outcomes Case 1: If A is acute and a < b AC B ba c h = b sin A c. If a > b sinA A C B b c h 2 SOLUTIONS aa B   

12 Possible Outcomes Case 2: If A is acute and a > b C B h 1 SOLUTION ba A  AC B ba c h = b sin A

13 Possible Outcomes Case 3: If A is obtuse and a > b C A B a b c ONE SOLUTION

14 Possible Outcomes Case 3: If A is obtuse and a ≤ b C A B a b c NO SOLUTION

15 First, determine what case you have. (ASA, AAS, SSA, etc.) Law of Sines (“plug & chug”) determine # of solutions ASA, AAS SSA use the Law of Sines to find them.

16 For SSA Triangles: 1. If A < 90° a.a < b 1.a < b(sin A)No Solution 2.a = b(sin A)1 Solution 3.a > b(sin A)2 Solution b.a ≥ b1 Solution 2. If A ≥ 90° a.a ≤ bNo Solution b.a > b1 Solution

17 Given:  ABC where a = 22 inches b = 12 inches m  A = 42 o EXAMPLE 1 Find m  B, m  C, and c. (acute) a>b m  A > m  B SINGLE–SOLUTION CASE

18 sin A = sin B a b Sin B  m  B = o or 21 o Sine values of supplementary angles are equal. The supplement of  B is  B 2.  m  B 2 =159 o

19 m  C = 180 o – (42 o + 21 o ) m  C = 117 o sin A = sin C a c c = inches SINGLE–SOLUTION CASE

20 Given:  ABC where c = 15 inches b = 25 inches m  C = 85 o EXAMPLE 2 Find m  B, m  C, and c. (acute) c < b c ? b sin C 15 < 25 sin 85 o NO SOLUTION CASE

21 sin A = sin B a b /ctr Sin B  m  B = ? Sin B > 1 NOT POSSIBLE ! Recall: – 1  sin   1 NO SOLUTION CASE

22 Given:  ABC where b = 15.2 inches a = 20 inches m  B = 110 o EXAMPLE 3 Find m  B, m  C, and c. (obtuse) b < a NO SOLUTION CASE

23 sin A = sin B a b /ctr Sin B  m  B = ? Sin B > 1 NOT POSSIBLE ! Recall: – 1  sin   1 NO SOLUTION CASE

24 Given:  ABC where a = 24 inches b = 36 inches m  A = 25 o EXAMPLE 4 Find m  B, m  C, and c. (acute) a < b a ? b sin A24 > 36 sin 25 o TWO – SOLUTION CASE

25 sin A = sin B a b Sin B  m  B = o or 39 o The supplement of  B is  B 2.  m  B 2 = 141 o m  C 1 = 180 o – (25 o + 39 o ) m  C 1 = 116 o m  C 2 = 180 o – (25 o +141 o ) m  C 2 = 14 o

26 sin A = sin C a c 1 /ctr c 1 = inches sin A = sin C a c 2 c = inches

27 Final Answers: m  B 1 = 39 o m  C 1 = 116 o c 1 = in. EXAMPLE 3 TWO – SOLUTION CASE m  B 2 = 141 o m  C 2 = 14 o C 2 = in. /ctr

28 CLASSWORK: (notebook) Find m  B, m  C, and c, if they exist. 1 ) a = 9.1, b = 12, m  A = 35 o 2) a = 25, b = 46, m  A = 37 o 3) a = 15, b = 10, m  A = 66 o /ctr

29 Answers: 1 )Case 1: m  B=49 o,m  C=96 o,c=15.78 Case 2: m  B=131 o,m  C=14 o,c=3.84 2)No possible solution. 3)m  B=38 o,m  C=76 o,c=15.93


Download ppt "LAW OF SINES: THE AMBIGUOUS CASE. MENTAL DRILL Identify if the given oblique triangle can be solved using the Law of Sines or the Law of Cosines 1. X."

Similar presentations


Ads by Google