Presentation is loading. Please wait.

Presentation is loading. Please wait.

Module 8 Lesson 5 Oblique Triangles Florben G. Mendoza.

Similar presentations


Presentation on theme: "Module 8 Lesson 5 Oblique Triangles Florben G. Mendoza."— Presentation transcript:

1 Module 8 Lesson 5 Oblique Triangles Florben G. Mendoza

2 If none of the angles of a triangle is a right angle, the triangle is called oblique. All angles are acute Two acute angles, one obtuse angle Florben G. Mendoza

3 To solve an oblique triangle means to find the lengths of its sides and the measurements of its angles. ab c A B C Sides:a b c Angles: A B C Florben G. Mendoza

4 FOUR CASES CASE 1: One side and two angles are known (SAA or ASA). CASE 2: Two sides and the angle opposite one of them are known (SSA). CASE 3: Two sides and the included angle are known (SAS). CASE 4: Three sides are known (SSS). Florben G. Mendoza

5 CASE 1: ASA or SAA S A A ASA S A A SAA Florben G. Mendoza

6 S S A CASE 2: SSA Florben G. Mendoza

7 S S A CASE 3: SAS Florben G. Mendoza

8 S S S CASE 4: SSS Florben G. Mendoza

9 9 Practice Exercise 1: 1) 2) 3) 4) 5) 6) 7) 8) 9) SAS SSA ASA SAA SSS ASA Florben G. Mendoza

10 10 Practice Exercise 2: 1. (A, B, c) 2. (A, B, a) 3. (b, c, A) 4. (a, b, A) 5. (a, b, c) 6. (C, b, c) 7. (a, B, C) 8. (a, A, C) 9. (A, b, C) 10. (C, b, a) SAA ASA SAS SSA SSS SSA ASA SAA ASA SAS Florben G. Mendoza

11 The Law of Sines is used to solve triangles in which Case 1 or 2 holds. That is, the Law of Sines is used to solve SAA, ASA or SSA triangles. ASA A A S SAA S A A SSA S A S Florben G. Mendoza

12 Law of Sines A B C a b c Let’s drop an altitude and call it h. h If we think of h as being opposite to both A and B, then Let’s solve both for h. This means Florben G. Mendoza

13 A B C a b c If I were to drop an altitude to side a, I could come up with Putting it all together gives us the Law of Sines. You can also use it upside-down. Florben G. Mendoza

14 Example 1: A B C a b c 45° 50° = 30 = 180° - (45° + 50°) Step 1: C = 180° - (A + B) C = 85° = 180° - 95° Step 2: a sin A = b sin B 30 sin 45° = b sin 50° b (sin 45°) = 30 (sin 50°) sin 45° b = 32.50 SAA Florben G. Mendoza

15 Example 1: SAA A B C a b c 45° 50° = 30 Step 3: a sin A = c sin C 30 sin 45° = c sin 85° c (sin 45°) = 30 (sin 85°) sin 45° c = 42.26 Florben G. Mendoza

16 Example 2: Let C = 35°, B = 10°, and a = 45 Step 1: A = 180° - (B + C) = 180° - (10° + 35°) = 180° - 45° A = 135° A B a b c 35° 10° = 45 C Step 2: a sin A = b sin B 45 sin 135° = b sin 10° b (sin 135°) = 45 (sin 10°) sin 135° b = 11.05 ASA Florben G. Mendoza

17 Example 2: ASA Let C = 35°, B = 10°, and a = 45 A B a b c 35° 10° = 45 C Step 3: a sin A = c sin C 45 sin 135° = c sin 35° c (sin 135°) = 45 (sin 35°) sin 135° c = 36.50 Florben G. Mendoza

18 Ambiguous Case (SSA) Case 1: If A is acute and a < b A C B b a c h = b sin A a. If a < b sinA A C B b a c h NO SOLUTION Florben G. Mendoza

19 Case 1: If A is acute and a < b AC B b a c h = b sin A b. If a = b sinA A C B b = a c h 1 SOLUTION Ambiguous Case (SSA) Florben G. Mendoza

20 Case 1: If A is acute and a < b AC B ba c h = b sin A b. If a > b sinA A C B b c h 2 SOLUTIONS aa B   180 -  Ambiguous Case (SSA) Florben G. Mendoza

21 Case 2: If A is obtuse and a > b C A B a b c ONE SOLUTION Ambiguous Case (SSA) Florben G. Mendoza

22 Case 2: If A is obtuse and a ≤ b C A B a b c NO SOLUTION Ambiguous Case (SSA) Florben G. Mendoza

23 Let A = 40°, b = 10, and a = 9 Example 3: A B C a b c h = 10 = 9 40° Step 1: Solve for h h = b sin A h = 10 sin 40° h = 6.43 a > h ( 2 Solutions) Step 2: a sin A = b sin B 9 sin 40° = 10 sin B 9 (sin B) = 10 (sin 40°) 9 9 sin B = 0.71 B = sin -1 0.71 B = 45.23° SSA Florben G. Mendoza

24 Let A = 40°, b = 10, and a = 9 Example 3: SSA A B C a b c h = 10 = 9 40° Step 3: C = 180° - (A + B) C = 180° - (40° + 45.23°) C = 180° - 85.23° C = 94.77° a sin A = c sin C 9 sin 40° = c sin 94.77° c (sin 40°) = 9 (sin 94.77°) c = 13.95 Step 4: (sin 40°) Florben G. Mendoza

25 Let A = 40°, b = 10, and a = 9 Example 3: SSA A B C a b c h = 10 = 9 40° b = 10 a = 9 45.23° B A C 9 Step 5: B’ = 180° - B B’ = 134.77° Step 6: C’ = 180° - (A + B’) B’ = 180° - 45.23° C’ = 180° - (40° + 134.77°) C’ = 180° - 174.77° C’ = 5.23° A B’ C’ c’ 40° 9 b = 10 2 ND Solution Florben G. Mendoza

26 Let A = 40°, b = 10, and a = 9 Example 3: SSA Step 7: a sin A = c’ sin C’ 9 sin 40° = c’ sin 5.23° c’ (sin 40°) = 9 (sin5.23°) (sin 40°) c’ = 1.28 (sin 40°) A B’ C’ c’ 40° 9 b = 10 Florben G. Mendoza

27 Let B = 53°, b = 10, and c = 32 Example 4: SSA Step 1: Solve for h h = c sin B h = 32 sin 53° h = 40.07 b < h ( No Solution) A C B b a c h Florben G. Mendoza

28 28 Example 5: SSA Let C = 100°, a = 25, and c = 33 Step 1: c sin C = a sin A 33 sin 100° = 25 sin A 33(sin A ) = 25 (sin 100°) 33 sin A = 0.75 A = sin -1 0.75 A = 48.59° Step 2: B = 180° - (A + C) B = 180° - (48.59° + 100°) B = 180° - 148.59° B = 31.41° C A B 100° 25 33 b Florben G. Mendoza

29 29 Example 5: SSA Let C = 100°, a = 25, and c = 33 C A B 100° 25 33 Step 3: c sin C = b sin B 33 sin 100° = b sin 31.41° 33(sin 31.41° ) = b(sin 100°) sin 100° b = 17.46 Florben G. Mendoza

30 30 Example 6: SSA Let A = 133°, a = 27, and c = 40 A B C 133° 27 40 a < c (No Solution) Florben G. Mendoza

31 We use the Law of Sines to solve CASE 1 (SAA or ASA) and CASE 2 (SSA) of an oblique triangle. The Law of Cosines is used to solve CASES 3 and 4. CASE 3: Two sides and the included angle are known (SAS). CASE 4: Three sides are known (SSS). Florben G. Mendoza

32 32 Deriving the Law of Cosines Write an equation using Pythagorean theorem for shaded triangle. b h a k c - k A B C c Florben G. Mendoza

33 33 Law of Cosines Similarly Note the pattern Florben G. Mendoza

34 34 Law of Cosines a 2 = b 2 + c 2 – 2bc cos A 2bc cos A = b 2 + c 2 – a 2 2bc cos A = b 2 + c 2 - a 2 2bc Similarly; cos A = b 2 + c 2 - a 2 2bc cos B = a 2 + c 2 - b 2 2ac cos C = a 2 + b 2 - c 2 2ab Florben G. Mendoza

35 35 Example 7: SAS Let A = 42°, b = 12.9 & c = 15.4 Step 1: a 2 = b 2 + c 2 – 2bc cos A a 2 = (12.9) 2 + (15.4) 2 – 2 (12.9) (15.4) (cos 42°) a 2 = 403.57 – 295.27 a 2 = 108.3 a =10.41 A B C 42° 15.4 12.9 a Florben G. Mendoza

36 36 Step 2: cos B = a 2 + c 2 - b 2 2ac cos B = (10.41) 2 + (15.4) 2 – (12.9) 2 2(10.41)(15.4) Example 3: Let A = 42°, b = 12.9 & c = 15.4 A B C 42° 15.4 12.9 a cos B = 179.12 320.68 cos B = 0.56 B = cos -1 0.56 B = 55.94° SAS Florben G. Mendoza

37 37 Example 3: Let A = 42°, b = 12.9 & c = 15.4 A B C 42° 15.4 12.9 a SAS Step 3: C = 180° - (A + B) C = 180° - (42° + 55.94°) C = 180° - 97.94° C = 82.06° Florben G. Mendoza

38 38 Example 8: SSS Let a = 9.47, b = 15.9 & c = 21.1 Step 1: cos A = b 2 + c 2 - a 2 2bc cos A = (15.9) 2 + (21.1) 2 – (9.47) 2 2(15.9)(21.1) cos A = 608.34 670.98 cos A = 0.91 A = cos -1 0.91 A = 24.49° Florben G. Mendoza

39 39 Step 2: cos B = a 2 + c 2 - b 2 2ac Example 8: SSS Let a = 9.47, b = 15.9 & c = 21.1 cos B = (9.47) 2 + (21.1) 2 – (15.9) 2 2(9.47)(21.1) cos B = 282.08 399.63 cos B = 0.71 B = cos -1 0.71 B = 44.77° Florben G. Mendoza

40 40 Example 8: SSS Let a = 9.47, b = 15.9 & c = 21.1 Step 3: C = 180° - (A + B) C = 180° - (24.49° + 44.77°) C = 180° - 69.26° C = 110.74° C A B 9.47 21.1 15.9 Florben G. Mendoza


Download ppt "Module 8 Lesson 5 Oblique Triangles Florben G. Mendoza."

Similar presentations


Ads by Google