Download presentation

Presentation is loading. Please wait.

Published byAnthony Middleton Modified over 2 years ago

2
Follow the same procedure as other force problems, but keep in mind: 1) Draw a free body diagram for EACH object or for each junction in a rope.

3
Follow the same procedure as other force problems, but keep in mind: 1) Draw a free body diagram for EACH object or for each junction in a rope. 2) Remember that the tension on opposite sides of a rope is equal and opposite.

4
Follow the same procedure as other force problems, but keep in mind: 1) Draw a free body diagram for EACH object or for each junction in a rope. 2) Remember that the tension on opposite sides of a rope is equal and opposite. 3) Create a system of equations – write force equations for each object / rope and set them equal to each other.

5
Two blocks are connected by a string and pulley as shown. Assuming that the string and pulley are massless, find a) the magnitude of the acceleration of each block b) Tension force on the blocks

6
Two blocks are connected by a string and pulley as shown. Assuming that the string and pulley are massless, find a) the magnitude of the acceleration of each block b) Tension force on the blocks FIRST: Think about what is going on in the problem. What do you know about the system and about how the blocks will move?

7
Two blocks are connected by a string and pulley as shown. Assuming that the string and pulley are massless, find a) the magnitude of the acceleration of each block b) Tension force on the blocks 1)There is just one rope, so the tension on each side is equal. 2)The two blocks will have the same acceleration (because they are connected), but the direction of the acceleration will be different. 3)90g block will move up. 110 g block will move down. What’s our next step?

8
Two blocks are connected by a string and pulley as shown. Assuming that the string and pulley are massless, find a) the magnitude of the acceleration of each block b) Tension force on the blocks Draw free body diagrams for each mass. What’s next?

9
Two blocks are connected by a string and pulley as shown. Assuming that the string and pulley are massless, find a) the magnitude of the acceleration of each block b) Tension force on the blocks Add the forces on each mass, and set = ma. What’s next? 1 st Equation F net = ma T – mg = ma T – 0.9 = 0.09 a 2 nd Equation F net = ma mg – T= ma 1.1 – T = 0.11a

10
Two blocks are connected by a string and pulley as shown. Assuming that the string and pulley are massless, find a) the magnitude of the acceleration of each block b) Tension force on the blocks Set the two Ts equal to each other to solve a. What’s next? 1 st Equation F net = ma T – mg = ma T – 0.9 = 0.09 a 2 nd Equation F net = ma mg – T= ma 1.1 – T = 0.11a 0.09a + 0.9 = 1.1 – 0.11a a = 1 m/s 2

11
Two blocks are connected by a string and pulley as shown. Assuming that the string and pulley are massless, find a) the magnitude of the acceleration of each block b) Tension force on the blocks Plug a into either equation to solve T. 1 st Equation F net = ma T – mg = ma T – 0.9 = 0.09 a 2 nd Equation F net = ma mg – T= ma 1.1 – T = 0.11a 0.09a + 0.9 = 1.1 – 0.11a a = 1 m/s 2 T = 1.1 – 0.11a = 1.1 – 0.11(1) T = 0.99 N

12
A 10-kg block is connected to a 40-kg block as shown in the figure. The surface on which the blocks slide is frictionless. A force of 50 N pulls the blocks to the right. a) What is the magnitude of the acceleration of the 40-kg block? b) What is the magnitude of the tension T in the rope that connects the two blocks? FIRST: Think about what is going on in the problem. What do you know about the system and about how the blocks will move?

13
A 10-kg block is connected to a 40-kg block as shown in the figure. The surface on which the blocks slide is frictionless. A force of 50 N pulls the blocks to the right. a) What is the magnitude of the acceleration of the 40-kg block? b) What is the magnitude of the tension T in the rope that connects the two blocks? FIRST: Think about what is going on in the problem. Tension is equal and opposite because they are connected by the same rope. Acceleration is the same (b/c connected) What’s our next step?

14
A 10-kg block is connected to a 40-kg block as shown in the figure. The surface on which the blocks slide is frictionless. A force of 50 N pulls the blocks to the right. a) What is the magnitude of the acceleration of the 40-kg block? b) What is the magnitude of the tension T in the rope that connects the two blocks? Next: Draw free-body diagrams for each object What’s our next step?

15
A 10-kg block is connected to a 40-kg block as shown in the figure. The surface on which the blocks slide is frictionless. A force of 50 N pulls the blocks to the right. a) What is the magnitude of the acceleration of the 40-kg block? b) What is the magnitude of the tension T in the rope that connects the two blocks? Add up the forces and set = ma What’s our next step? 1 st Equation 2 nd Equation F net = ma T = 10a 50 – T = 40a

16
A 10-kg block is connected to a 40-kg block as shown in the figure. The surface on which the blocks slide is frictionless. A force of 50 N pulls the blocks to the right. a) What is the magnitude of the acceleration of the 40-kg block? b) What is the magnitude of the tension T in the rope that connects the two blocks? Set the two T s equal to each other. What’s our next step? 1 st Equation 2 nd Equation F net = ma T = 10a 50 – T = 40a 50 – T = 40a 50 – 10a = 40a

17
A 10-kg block is connected to a 40-kg block as shown in the figure. The surface on which the blocks slide is frictionless. A force of 50 N pulls the blocks to the right. a) What is the magnitude of the acceleration of the 40-kg block? b) What is the magnitude of the tension T in the rope that connects the two blocks? Solve for a then solve for t. 1 st Equation 2 nd Equation F net = ma T = 10a 50 – T = 40a 50 – T = 40a 50 – 10a = 40a a = 1 m/s 2 T = 10a = 10 N

19
Tension is equal in all parts of a rope.

20
1)Find the tension in each cable. 2) Find the tension in each cable and the acceleration of the blocks. M 1 = 10 kg, and M 2 = 5 kg

21
1)Find the tension in each cable. Strategy: Draw the free body diagrams for the weight and for the middle junction. Add the forces and set = 0. (no a). You will find T 3 = 200N and T 1X + T 2X – T 3 = 0 T 1Y + T 2Y – T 3 = 0 (you will need to use trig) Then, you’ll have to solve for one of the Ts and plug into the other equation. T 1 = 148.4 N T 2 = 79.0 N T 3 = 200 N

22
2) Find the tension in each cable and the acceleration of the blocks. Strategy: Draw the free body diagrams for each weight. Add the forces and set = ma. You will find M 1 a = T and M 2 a = M 2 g - T Set the Ts equal. T = 30 N a = 3.3 m/s 2

Similar presentations

OK

Inclined Plane Problems. Axes for Inclined Planes X axis is parallel to the inclined plane Y axis is perpendicular to the inclined plane Friction force.

Inclined Plane Problems. Axes for Inclined Planes X axis is parallel to the inclined plane Y axis is perpendicular to the inclined plane Friction force.

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Neurological anatomy and physiology ppt on cells Download ppt on fundamental rights and duties of an indian Ppt on ideal gas law formula Ppt on climate change and global warming Ppt on electricity generation from solar energy Ppt on cloud hosting Ppt on panel discussion definition Ppt on review writing for kids Ppt on area of plane figures formulas Ppt on environmental studies