Presentation is loading. Please wait.

Presentation is loading. Please wait.

Starting with the Basics.  Speak to the relationship between Infection Prevention methods and reduced transmission of multidrug resistant organisms and.

Similar presentations


Presentation on theme: "Starting with the Basics.  Speak to the relationship between Infection Prevention methods and reduced transmission of multidrug resistant organisms and."— Presentation transcript:

1 Starting with the Basics

2  Speak to the relationship between Infection Prevention methods and reduced transmission of multidrug resistant organisms and C. difficile.  Explain the importance of hand hygiene including barriers preventing proper hand hygiene  Describe environmental cleaning issues and assessment methods for cleaning validation  Discuss recommendations for equipment cleaning and disinfection  List the personal protective equipment used to prevent the spread of organisms

3 Multi Drug Resistant Organisms  Microorganisms, predominantly bacteria, that are resistant to one or more classes of antimicrobial agents  Some common ones include: MRSA, VRE, CRE ESBL, and Acinetobacter

4 Colonized or Infected: What is the Difference? People who carry bacteria without evidence of infection (fever, purulent drainage, increased white blood cell count) are colonized If an infection develops, it is usually from bacteria that colonize patients Bacteria that colonize patients can be transmitted from one patient to another by the hands of healthcare workers ~ ~ Bacteria can be transmitted even if the patient is not infected ~

5  MRSA-Methicillin-resistant Staphylococcus aureus causes a range of illnesses, from skin and wound infections to pneumonia and bloodstream infections that can cause sepsis and death.  Staph bacteria, including MRSA, are one of the most common causes of healthcare-associated infections.  Vancomycin is a common antibiotic used for treatment of MRSA infections. Staphylococcus aureus can become resistant to Vancomycin.

6  VRE -Vancomycin resistant enterococcus can live in the human intestines and female genital tract without causing disease.  VRE can cause infections of the urinary tract, the bloodstream, or of wounds associated with catheters or surgical procedures.  People with colonized VRE do not need treatment.  Most VRE infections can be treated with antibiotics other than Vancomycin.

7  CRE - Carbapenem-resistant Enterobacteriaceae bacteria are difficult to treat because they have high levels of resistance to antibiotics.  Klebsiella species and Escherichia coli (E. coli) are examples of Enterobacteriaceae, a normal part of the human gut bacteria, that can become carbapenem-resistant.  Types of CRE are sometimes known as KPC (Klebsiella pneumoniae carbapenemase) and NDM (New Delhi Metallo- beta-lactamase). KPC and NDM are enzymes that break down carbapenems and make them ineffective.  Both of these enzymes, as well as the enzyme VIM (Verona Integron-Mediated Metallo-β-lactamase) have also been reported in Pseudomonas.

8  ESBL – Some bacteria product Extended Spectrum Beta Lactamase enzymes that mediate resistance to extended-spectrum third generation cephalosporins, but do not affect cephamycins (e.g., cefoxitin and cefotetan) or carbapenems (e.g., meropenem or imipenem).  K. pneumoniae, K. oxytoca, E. coli, and some Enterobacteriaceae, such as Salmonella species and Proteus mirabilis, and isolates of Pseudomonas aeruginosa can produce ESBLs.

9  Acinetobacter are gram-negative bacteria that cause of pneumonia, bloodstream infections, or wound infections among critically ill patients.  Many of these bacteria have become very resistant to antibiotics.  May “colonize” a patient especially in tracheostomy sites or open wounds.  Can be spread to susceptible persons by person-to- person contact or contact with contaminated surfaces.

10  Clostridium difficile is not a multidrug resistant organism  C. difficile is an anaerobic, gram-positive, spore-forming bacillus, first detected in 1935 in lower intestinal microbiota of healthy newborns.  C. difficile was thought to be nonpathogenic for nearly four decades  In 1978, C.difficile was identified as the primary cause of pseudomembranous colitis in patients treated with antibiotics. e8be75d86888/File/2013CDiffFinal.pdf

11  C. difficile infection (CDI) is the leading cause of antibiotic-associated diarrhea and a highly problematic healthcare-associated infection  The major risk factors for CDI are exposure to antibiotics, hospitalization, and advanced age.  The incubation period following acquisition is suggested to be short (median of 2–3 days).  There are two states of C. difficile: The vegetative stage does not survive long, but the spore state can persist in the environment for many months.

12 Transmission and persistence of the resistant strain is determined by:  Availability of vulnerable patients  Selective pressure exerted by antimicrobial use  Colonization pressure  Utilization of prevention efforts MDRO are often used as surveillance markers to monitor for IC breaches

13  Category IA Strongly recommended for implementation and strongly supported by well designed experimental, clinical, or epidemiologic studies.  Category IB Strongly recommended for implementation and supported by some experimental, clinical, or epidemiologic studies and a strong theoretical rationale.  Category IC Required for implementation, as mandated by federal and/or state regulation or standard.  Category II Suggested for implementation and supported by suggestive clinical or epidemiologic studies or a theoretical rationale.  No recommendation Unresolved issue. Practices for which insufficient evidence or no consensus regarding efficacy exists.

14  Two Tiered approach for prevention and control of MDRO in a healthcare setting  Tier one are general recommendations for routine prevention and control  Tier two are intensified MDRO control efforts to institute when MDRO rates are not decreasing, an outbreak or new MDRO organism is identified

15  Administrative Measures/Adherence Monitoring  MDRO Education  Judicious Antimicrobial Use  Surveillance  Infection Control Precautions  Environmental Measures  Decolonization

16  Provide administrative support and commit both fiscal and human resources to prevent and control MDRO transmission (IB)  Enforce adherence to Standard and Contact Precautions (IB)  Feedback to administration and staff on rates (IB)  Participation in MDRO coalitions (IB)  Effective communication (II)

17  Staff education should occur as part of orientation and periodically based on facility assessment (IB)  Adherence to hand hygiene practices in conjunction with other control measures have been associated temporally with decreases in MDRO transmission in various healthcare settings.

18  Hospitals and LTCFs should have a multi- disciplinary process to review susceptibility patterns and antimicrobial agents in the formulary (IB)  Implement a system to prompt clinicians to use the appropriate agent and regimen for a given clinical situation (IB)  Provide clinicians with antimicrobial susceptibility reports at least annually (IB)

19  Establish a system that the lab promptly notifies IC, Medical Director, or designee if a novel resistance pattern is detected (IB)  Hospitals and LTCF labs:  Lab protocols for storing isolates for elected molecular typing when needed to confirm epi-link (IB)  System to detect and communicate evidence of MDRO’s in clinical isolates (IB)  Prepare facility and special care unit specific antimicrobial susceptibility reports and monitor for resistance changes (IA/IB/IC)  Monitor trends in incidence of target MDRO’s over time (IA)

20  Follow recommended cleaning, disinfection, and sterilization guidelines  Dedicate non-critical medical items  Prioritize room cleaning  Focus on cleaning and disinfecting frequently touched surfaces and equipment in immediate vicinity of patient.

21  Generally not routinely recommended  Do not use topical Mupirocin to routinely decolonized MRSA patients as a component for MRSA control in any healthcare setting (IB)  Limit decolonization to health care providers found to be colonized with MRSA who have an epi-link to ongoing transmission of MRSA to patients (IB)  Consult with experts on a case-by-case basis regarding decolonization.

22  Follow Standard Precautions in all healthcare settings (IB)  Contact precautions in acute care settings  Implement for all patients known to be colonized or infected with target MDRO (IB)  Patient placement in single room or cohort (IB)

23  Contact precautions should be used routinely for all infected and known colonized patients (IA)  Don gowns and gloves upon entry to patient’s room or cubicle (IB)  Maintain contact precautions if active surveillance cultures are obtained until results are negative (IB)  Patient placement-single room or cohort  Implement admission and placement policies as needed (IB)  Stop new admissions to the unit or facility if transmission continues despite intensified control measures (IB)

24  Different patient population  Mobile population  Cognitive issues may be a factor  Incontinence issues may be a factor  Frequent hospitalizations  Increased antibiotic use  Colonization pressure  Double-room/roommates  Group living for extended time period  Group activities  This is their home!! SHEA_GuidelineforICinLTCFs.pdf

25 Tier 1:  Follow Standard Precautions in all healthcare settings (IB)  Consider the individual patient’s clinical situation and facility resources in deciding whether to implement Contact Precautions (II)  Patient placement in single room or cohort (IB) Tier 2:  Use contact precautions routinely for patients colonized or infected (IA)  Modify Contact Precautions for patients whose site of colonization or infection can be contained and who can observe good hand hygiene to enter common areas and group activities  Maintain Contact Precautions until active surveillance cultures are negative (IB)  Implement policies for patient admission and placement (IB)  Stop admissions if transmission continues (IB)

26  When single-patient rooms are available, assign priority for these rooms to patients with known or suspected MDRO colonization or infection.  When single-patient rooms are not available, cohort patients with the same MDRO in the same room or patient-care area.  When cohorting patients with the same MDRO is not possible, place MDRO patients in rooms with patients who are at low risk for acquisition of MDROs and associated adverse outcomes from infection and are likely to have short lengths of stay.  Give highest priority to those patients who have conditions that may facilitate transmission, e.g., uncontained secretions or excretions.

27  Studies found that HCP, including attending physicians, were half as likely to enter the rooms of or examine patient on contact precautions  Patients placed on Contract Precautions for MRSA had significantly more preventable adverse events, expressed greater dissatisfaction with their treatment and had less documented care than non-isolated patients

28  Proper hand hygiene, proper use of PPE, Proper environmental cleaning, and proper cleaning, disinfection and/or sterilization of equipment, and avoiding reuse of single-use items.  Infection Prevention encompasses many factors  Breaks or missteps with any of these factors can result in risk of infection  Patients  Staff  Visitors

29 Contaminated Hands Reusable Equipment Environmental Surfaces Sick Visitors Ill Employees Medical Procedures Improper Disinfection And Sterilization Multidose vials Reuse of single-use items Improper PPE Use Contaminated meds Prolonged Use of lines

30

31  Hand hygiene should be a cornerstone of prevention efforts  Prevents transmission of pathogens via hands of healthcare personnel  As part of a hand hygiene intervention, consider:  Ensuring easy access to soap and water/alcohol-based hand sanitizer  Education for healthcare personnel and patients  Observation of practices - particularly around high-risk procedures (before and after contact with colonized or infected patients)  Feedback – “Just in time” feedback if failure to perform hand hygiene observed  Positive and Negative feedback

32 Fire Code and/or Life Safety  The maximum individual dispenser fluid  1.2 Liters (1200mL; 0.3 gallons) for dispensers in patient rooms, corridors and areas open to corridors  Corridors must be at least 6 feet wide  2.0 Liters (2000mL; 0.5 gallons) for dispensers in suites of rooms.  Dispensers must be installed at least 4 feet apart  Dispenser must measure at least 6 inches from the center line to the ignition source.  Dispensers installed directly over carpeted floors shall be permitted only in sprinkler smoke compartments  More storage and use regulations can be found at: https://www.ndhealth.gov/LifeSafety/PDF_Files/ALCOHOL_BASED_HAND_RUB_SOLUTIONS.pdf

33  Hand washing agents cause irritation and dryness  Sinks are inconveniently located/shortage of sinks  Lack of soap and paper towels  Often too busy/insufficient time  Understaffing/overcrowding  Patient needs take priority  Hand hygiene interferes with health-care worker relationships with patients  Low risk of acquiring infection from patients  Wearing of gloves/beliefs that glove use obviates the need for hand hygiene  Lack of knowledge of guidelines/protocols  Not thinking about it/forgetfulness  No role model from colleagues or superiors  Skepticism regarding the value of hand hygiene  Disagreement with the recommendations  Lack of scientific information of definitive impact of improved hand hygiene on health-care–associated infection rates

34 Increasing Workload Hand washing Compliance Personnel with heavy workloads have little time to wash their hands A recent study showed that the busier healthcare workers are, the less likely they are to wash their hands when recommended.

35 Sinks used for hand washing are often installed in inconvenient locations. Can you find the sink in this picture? Sinks are often poorly located

36 The sink is located behind the patient’s bed and behind several IV pumps. (see arrow) Personnel are unlikely to use hand washing sinks if they are not readily accessible. Be involved with all remodel and construction projects from the design phase to completion of the project Location, location, location...

37 Frequent hand washing with soap and water often causes skin irritation and dryness. Staff should be involved with hand hygiene product selection Facilities should provide lotion that is compatible with soaps, sanitizers, and gloves Another reason why personnel don’t wash their hands often

38 Many personnel don’t realize when they have germs on their hands Healthcare workers can get 100s or 1000s of bacteria on their hands by doing simple tasks, like: pulling patients up in bed taking a blood pressure or pulse touching a patient’s hand rolling patients over in bed touching the patient’s gown or bed sheets touching equipment like bedside rails, over-bed tables, IV pumps Culture plate showing growth of bacteria 24 hours after a nurse placed her hand on the plate

39 Using alcohol-based hand sanitizer to improve hand hygiene More than 20 published studies have shown that alcohol-based hand sanitizers are more effective than either plain soap or antibacterial soaps in reducing the number of live bacteria on the hands. Adapted from: Hosp Epidemiol Infect Control, 2nd Edition, 1999.

40 When compared to traditional soap and water hand washing, alcohol hand sanitizers have the following advantages: take less time to use can be made more accessible than sinks cause less skin irritation and dryness are more effective in reducing the number of bacteria on hands makes alcohol-based hand sanitizers readily available to personnel has led to improved hand hygiene practices Infection Preventionists need to assess that hand sanitizer is available in convenient locations Alcohol-based Hand Sanitizer Advantages

41 Soap and Water has it’s Place For hands that are visibly dirty or contaminated with proteinaceous material or are visibly soiled with blood or other body fluids Before eating After using the restroom After exposure to C. difficile or Bacillus anthracis is suspected or proven. Hand sanitizer dispensers should be placed in safe locations Pediatric units, chemical dependency units, cognitive and behavioral settings Hand Sanitizer has it’s Place also

42 Consider two methods of measurement:  Observation  Time consuming/bias  Patient or visitor/family surveys  Patient knowledge/cognition/recall  Product Measurement  Proxy measure/inaccuracies  Electronic Monitoring  Cost

43  Objective  Measurable  Unbiased  Consistent  Repeatable  Accurate  Comparable  Observation most common type used  Issues include:  Hawthorne Effect  Time Consuming  Bias by observers  Inability of anonymously observe behind closed doors Staff education and feedback are very important components to a hand hygiene program

44 Percent of Surfaces Contaminated Frequency of Environmental Contamination of Surfaces in the Rooms of Patients with Methicillin-Resistant S. aureus (MRSA) Resistant bacteria on the skin or in the gastrointestinal tract of patients can often be found on common items Healthcare workers can contaminate their hands by touching environmental surfaces near affected patients. How Healthcare workers contaminate their hands

45

46 VRE on Hands and Environmental Surfaces Studies have been conducted to monitor the transmission of VRE Up to 41% of healthcare worker’s hands sampled (after patient care and before hand hygiene) were positive for VRE 1 VRE were recovered from a number of environmental surfaces in patient rooms VRE survived on a countertop for up to 7 days 2 1 Hayden MK, Clin Infect Diseases 2000;31: Noskin G, Infect Control and Hosp Epidemi 1995;16:

47 The Inanimate Environment Can Facilitate Transmission ~ Contaminated surfaces increase cross-transmission ~ X represents VRE culture positive sites

48  In patient-care areas, visibly soiled areas should first be cleaned and then chemically disinfected.  For disinfection, the precleaned areas should be moistened with the appropriate disinfectant for the stated contact time and allowed to air dry.  Gloves should be worn during cleaning and decontaminating procedures.

49  There are three levels of disinfection:  High Level  kills all organisms, except high levels of bacterial spores  Intermediate Level  kills mycobacteria, most viruses, and bacteria as chemical germicide registered as a "tuberculocide" by the EPA  Low Level  kills some viruses and bacteria as a chemical germicide registered as a hospital disinfectant by the EPA.

50  Contact Time  Short contact time may be difficult to obtain  Room turn around time can be a factor  Orientation and ongoing staff education  Quiz staff and provide real-time education  Manufacturer recommendations  Review to make sure disinfectants can be used  CDC guidelines  Some non critical equipment may not have M. recommendations available. CDC guidelines should be considered based on equipment construction and usage.

51  Critical Devices  Reusable instruments or devices that enter sterile tissue, including the vascular system of any patient, and devices through which blood flows should be sterilized before reuse.  Semi Critical Devices  Reusable devices or items that touch mucous membranes should, at a minimum, receive high-level disinfection between patients.  Noncritical Devices  Except on rare and special instances, items that do not ordinarily touch the patient or touch only intact skin are not involved in disease transmission, and generally do not necessitate disinfection between uses on different patients.

52  Bleach can kill spores, whereas other standard disinfectants cannot  Limited data suggest cleaning with bleach reduces C. difficile transmission  1:10 dilution prepared fresh daily  1:10 Prepackaged with stabilizers  Two before-after intervention studies demonstrated benefit of bleach cleaning in units with high endemic CDI rates  Therefore, bleach may be most effective in reducing burden where CDI is highly endemic Mayfield et al. Clin Infect Dis 2000;31: Wilcox et al. J Hosp Infect 2003;54:

53 Assess adequacy of cleaning before changing to new cleaning products  Ensure that environmental cleaning is adequate and high-touch surfaces are not being overlooked  One study used a fluorescent environmental marker to assess cleaning:  only 47% of high-touch surfaces in 3 hospitals were cleaned  sustained improvement in cleaning of all objects, especially in previously poorly cleaned objects, following educational interventions with the environmental services staff Carling et al. Clin Infect Dis 2006;42:385-8.

54  Level One (basic program)  Level Two (advanced program

55

56  Covert environmental marking  Real time feedback for Environmental Services staff  Let them see the areas that were missed  Test at least 3 times a year using different time frames to capture different cleaning variances  Provide overall rates and findings to Environmental Services, Infection Control Committee and Administration

57

58  Is IP staff involved and providing input into new equipment and devices BEFORE they’re ordered?  Can new equipment be cleaned properly with the disinfectants available?  Are manufacturer recommendations accessible to the people responsible for cleaning and disinfecting the equipment?  Can staff pull the recommendations on demand and are they following them correctly?

59  Medical devices that require sterilization or disinfection must be thoroughly cleaned to reduce material/bio burden before being exposed to the germicide.  Germicide and/or device manufacturers' instructions should be closely followed.

60  Disinfection means the use of a chemical procedure that eliminates virtually all recognized pathogenic microorganisms but not necessarily all microbial forms (e.g., bacterial endospores) on inanimate objects.

61  There are three levels of disinfection:  High Level  kills all organisms, except high levels of bacterial spores, and is effected with a chemical germicide cleared for marketing as a sterilant by the FDA  Intermediate Level  kills mycobacteria, most viruses, and bacteria with a chemical germicide registered as a "tuberculocide" by the EPA  Low Level  kills some viruses and bacteria with a chemical germicide registered as a hospital disinfectant by the EPA.

62  Noncritical Devices  Except on rare and special instances, items that do not ordinarily touch the patient or touch only intact skin are not involved in disease transmission, and generally do not necessitate disinfection between uses on different patients.  These items include crutches, bed boards, blood pressure cuffs, and a variety of other medical accessories.  Consequently, depending on the particular piece of equipment or item, washing with a detergent or using a low-level disinfectant may be sufficient when decontamination is needed.  If noncritical items are grossly soiled with blood or other body fluids, follow instructions outlined in the section on HIV-related sterilization and disinfection of this information system.

63  Exceptional circumstances that require noncritical items to be either dedicated to one patient or patient cohort, or subjected to low-level disinfection between patient uses are those involving:  Patients infected or colonized with drug-resistant microorganisms judged by the infection control program, based on current state, regional, or national recommendations, to be of special or clinical or epidemiologic significance  MRSA, VRE, CRE, C. difficile  Patients infected with highly virulent microorganisms, e.g., viruses causing hemorrhagic fever (such as Ebola or Lassa).  Prions

64  Semi Critical Devices  Reusable devices or items that touch mucous membranes should, at a minimum, receive high-level disinfection between patients.  These devices include reusable flexible endoscopes, endotracheal tubes, anesthesia breathing circuits, and respiratory therapy equipment, dental instruments that do NOT penetrate soft tissue and bone.  The other ones:  Vaginal probes and speculums, anoscopes, rectal thermometers  Are yours single-use disposable or reprocessed?

65  Critical Devices  Reusable instruments or devices that enter sterile tissue, including the vascular system of any patient, and devices through which blood flows should be sterilized before reuse.  Dental equipment that penetrates soft tissue and bone.

66  Sterilization means the use of a physical or chemical procedure to destroy all microbial life, including highly resistant bacterial endospores.  The major sterilizing agents used in hospitals are: moist heat by steam autoclaving, chemical, ethylene oxide gas, and dry heat.

67  Single-use is just that-it is used one time for one patient and disposed of properly.  Multi-use items can be used more than once but manufacturer’s recommendations must be followed regarding amount of use, cleaning and disinfection between use, labeling, and storage.  Reuse of single-use devices -FDA jurisdiction with strong mandates to insure the device is safe for use  Hospital or third-party processor is considered the manufacturer and held to the same standards and liability  Provide education to staff so they understand what is meant by single-use vs. reusable equipment, supplies, or devices  Have a policy defining your facility’s processes

68

69 “Specialized clothing or equipment worn by an employee for protection against infectious materials” (OSHA) Improve personnel safety in the healthcare environment through appropriate use of PPE.

70  OSHA issues workplace health and safety regulations. Regarding PPE, employers must:  Provide appropriate PPE for employees  Ensure that PPE is disposed or reusable PPE is cleaned, laundered, repaired and proper storage  OSHA also specifies circumstances for which PPE is indicated  CDC recommends when, what and how to use PPE https://www.osha.gov/pls/oshaweb/owadisp.show_document?p_id=10051&p_table=STANDARDS

71 Type of exposure anticipated –Splash/spray versus touch –Category of isolation precautions Durability and appropriateness for the task Fit

72 Gloves – Use when touching blood, body fluids, secretions, excretions, contaminated items; for touching mucus membranes and nonintact skin Gowns – Use during procedures and patient care activities when contact of clothing/ exposed skin with blood/body fluids, secretions, or excretions is anticipated

73 Mask and goggles or a face shield – Use during patient care activities likely to generate splashes or sprays of blood, body fluids, secretions, or excretions

74 Expanded Precautions include –Contact Precautions –Droplet Precautions –Airborne Infection Isolation

75 Contact Precautions – Gown and gloves for contact with patient or environment of care (e.g., medical equipment, environmental surfaces) these will likely be required upon entering the patient’s environment Droplet Precautions – Surgical masks within 3-6 feet of patient Airborne Infection Isolation – Particulate respirator* *Negative pressure isolation room also required

76 Purpose – protect from inhalation of infectious aerosols (e.g., Mycobacterium tuberculosis -TB) PPE types for respiratory protection –Particulate respirators –Half or full-face elastomeric respirators –Powered air purifying respirators (PAPR) What is your facilities TB plan? –Accept the patient –Transfer the patient

77 Medical evaluation Annual Fit testing Training Fit checking before use

78 respsars.html

79 Gown first Mask or respirator Goggles or face shield Gloves *The combination of PPE will affect sequence – be practical Staff education:

80 Contaminated – outside front Areas of PPE that have or are likely to have been in contact with body sites, materials, or environmental surfaces where the infectious organism may reside Clean – inside, outside back, ties on head and back Areas of PPE that are not likely to have been in contact with the infectious organism

81 Perform hand hygiene immediately after removing PPE –If hands become visibly contaminated during PPE removal, wash hands before continuing to remove PPE Wash hands with soap and water or use an alcohol-based hand rub *Ensure that hand hygiene facilities are available at the point needed, e.g., sink or alcohol-based hand sanitizer

82 Don before contact with the patient, generally before entering the room Use carefully – don’t spread contamination Remove and discard carefully, either at the doorway or immediately outside patient room; remove mask/respirator outside room Immediately perform hand hygiene

83  PPE is available to protect staff from exposure to infectious agents in the healthcare workplace  Periodically assess staff compliance to PPE usage and communicate the findings to staff

84 Contaminated Hands Reusable Equipment Environmental Surfaces Sick Visitors Ill Employees Medical Procedures Improper Disinfection And Sterilization Multidose vials Reuse of single-use items Improper PPE Use Contaminated meds Prolonged Use of lines

85  An Infection Preventionist is an investigator and an advocate for patients and staff  Ask questions  Be observant  Find solutions  Work as a team-you are the leader of many  Stay current on national guidelines  Network-Where do you go for answers?

86 Speak to the relationship between Infection Prevention methods and reduced transmission of multidrug resistant organisms and C. difficile. Explain the importance of hand hygiene including barriers preventing proper hand hygiene Describe environmental cleaning issues and assessment methods for cleaning validation Discuss recommendations for equipment cleaning and disinfection List the personal protective equipment used to prevent the spread of organisms https://www.osha.gov/SLTC/etools/hospital/hazards/univprec/univ.html

87 Julie Jacobson, RN BSN CIC Dacotah Plains APIC Chapter


Download ppt "Starting with the Basics.  Speak to the relationship between Infection Prevention methods and reduced transmission of multidrug resistant organisms and."

Similar presentations


Ads by Google