# The Ranked Sequence ADT Definition A ranked sequence is a collection of items arranged in a linear order, where each item has a rank defining the relative.

## Presentation on theme: "The Ranked Sequence ADT Definition A ranked sequence is a collection of items arranged in a linear order, where each item has a rank defining the relative."— Presentation transcript:

The Ranked Sequence ADT Definition A ranked sequence is a collection of items arranged in a linear order, where each item has a rank defining the relative ordering of that item in the sequence. Note: Stacks, queues and dequeues are restricted type of sequences which provide an access to specific items only. Operations (methods) on ranked sequences: returnItem (rank) Returns the item at the specified rank replaceItem (rank, newItem) Replaces the item at the specified rank with newItem insertItem (rank, newItem) Inserts newItem at the specified rank deleteItem (rank) Deletes the item at the specified rank size () Returns the size of the sequence empty () Returns true is the sequence is empty traverse () Processes each node in the sequence in a specified way

An array-based implementation of a ranked sequence Consider array S[i] with n objects, where i is the reference to the object with rank i. Algorithm returnItem (rank): return S[rank] O(1) efficiency Algorithm replaceItem (rank, newItem): O(1) efficiency S[rank] := newItem Algorithm insertItem (rank, newItem): O(n) efficiency for i = n-1 to rank do S[i+1] := S[i] S[rank] := newItem n++ Algorithm deleteItem (rank): O(n) efficiency item := S[rank] for i = rank to n-1 do S[i] := S[i+1] n-- return item size() and empty() methods are O(1), and traverse() is O(n) method.

A doubly linked list implementation of a ranked sequence: the insertItem method Consider the following support methods: checkRank(rank), which checks if rank is within the legal bounds and if not throws an out of bounds exception, and nodeAtRank(rank), which returns the node at the specified rank. private void checkRank (int rank) throws BoundaryViolationException { if (rank size() - 1) throw new Boundary ViolationException (“Invalid rank.”); } private DLNode nodeAtRank (int rank) { DLNode node; if (rank <= size()/2) { node = header.getNext(); for (int i=0; i { "@context": "http://schema.org", "@type": "ImageObject", "contentUrl": "http://images.slideplayer.com/13/4082637/slides/slide_3.jpg", "name": "A doubly linked list implementation of a ranked sequence: the insertItem method Consider the following support methods: checkRank(rank), which checks if rank is within the legal bounds and if not throws an out of bounds exception, and nodeAtRank(rank), which returns the node at the specified rank.", "description": "private void checkRank (int rank) throws BoundaryViolationException { if (rank size() - 1) throw new Boundary ViolationException ( Invalid rank. ); } private DLNode nodeAtRank (int rank) { DLNode node; if (rank <= size()/2) { node = header.getNext(); for (int i=0; i

A doubly linked list implementation of a ranked sequence: the insertItem method (cont.) public void insertItem (int rank, Object item) throws BoundaryViolationException { if (rank != size()) checkRank (rank); DLNode next = nodeAtRank (rank); DLNode prev = next.getPrev(); DLNode node = new DLNode (item, next, prev); next.setPrev(node); prev.setNext(node); size++; } The efficiency of this method is O(n/2), because of the nodeAtRank method, which in the worst case traverses the half of the sequence.

A doubly linked list implementation of a ranked sequence: the deleteItem method public Object deleteItem (int rank) throws Boundary ViolationException { checkRank (rank); DLNode node = nodeAtRank(rank); DLNode next = node.getNext(); DLNode prev = node.getPrev(); prev.setNext(next); next.setPrev(prev); size - -; return node.getData(); } The efficiency of this method is O(n/2), because of the nodeAtRank method, which in the worst case traverses the half of the sequence.

The Positional Sequence ADT Definition A positional sequence is a collection of items arranged in a linear order, where each item has a position defined in terms of the neighboring nodes. Positions (contrary to ranks) are defined relatively to each other, and are not tied to items. Operations (methods) on positional sequences: replace (position, item) Replaces data at position with item swap (position1, position2) Swaps items in positions 1 and 2 first () Returns the position of the first item in the sequence last () Returns the position of the last item in the sequence before (position) Returns the position of the item preceding the one in position after (position) Returns the position of the item following the one in position insertFirst (item) Inserts item at the beginning of the sequence insertLast (item) Inserts item at the end of the sequence insertBefore (position, item) Inserts item before the one in position insertAfter (position, item) Inserts item after the one in position delete (position) Deletes the item in position deleteFirst () Deletes the first item in the sequence deleteLast () Deletes the last item in the sequence size () Returns the size of the sequence empty () Returns true is the sequence is empty traverse () Processes each node in the sequence in a specified way

Defining positions is the Positional Sequence ADT To implement operations on PS ADT, we must define the notion of a position. Think of a sequence as a container with spots arranged in a linear order, where elements are to be placed.... position(i-1) position(i) position(i+1)... where position(i) is always after position(i-1) and before position(i+1) Note that a position of an item does not change if a rank of this item changes as a result of adding or removing a previous item in the sequence. Also, a position will not change if an item currently in that position is removed from the sequence.

Example: Consider an initially empty sequence to which the following set of operations is applied: Operation: insertFirst(8) Current list: data 8; position 1 Operation: insertAfter(1, 5) Current list: data 8; position 1 data 5; position 2 Operation: insertBefore(2, 3) Current list: data 8; position 1 data 3; position 3 data 5; position 2 Operation: insertFirst(9) Current list: data 9; position 4 data 8; position 1 data 3; position 3 data 5; position 2 Operation: before(3) Position of the item before the one in position 3: 1 Operation: last() Position of the last item in the sequence: 2 Operation: remove(4) Current list: data 8; position 1 data 3; position 3 data 5; position 2 Operation: swap(1, 2) Current list: data 5; position 1 data 3; position 3 data 8; position 2 Operation: replace(3, 7) Current list: data 5; position 1 data 7; position 3 data 8; position 2 Operation: insertAfter(first(), 2) Current list: data 5; position 1 data 2; position 5 data 7; position 3 data 8; position 2

The Positional Sequence ADT interface public interface PSDLL { public int replace (int place, int item) throws InvalidPositionException; public void insertBefore (int place, int item) throws InvalidPositionException; public void insertAfter (int place, int item) throws InvalidPositionException; public void swap (int place1, int place2) throws InvalidPositionException; public int delete (int place) throws InvalidPositionException; public int before (int place) throws InvalidPositionException; public int after (int place) throws InvalidPositionException; public void insertFirst (int item); public void insertLast (int item); public PSDLNode deleteFirst (); public PSDLNode deleteLast (); public int size(); public int last (); public int first (); public boolean empty (); public void traverse (); }

Positional Sequence nodes class PSDLNode { private int data; private PSDLNode next, prev; int pos; public PSDLNode () { } public PSDLNode (int d) { data = d; } public PSDLNode (int newData, PSDLNode newNext, PSDLNode newPrev, int newPos) { data = newData; next = newNext; prev = newPrev; pos = newPos; } public void setData (int newData) { data = newData; } public void setNext (PSDLNode newNext) { next = newNext; } public void setPrev (PSDLNode newPrev) { prev = newPrev; } public void setPosition (int newPos) { pos = newPos; } public int getData () { return data; } public PSDLNode getNext () { return next; } public PSDLNode getPrev () { return prev; } public int getPosition () { return pos; } public void displayPSDLNode () { System.out.print ("data " + data + "; position " + pos); System.out.println (); }

public boolean empty () { return (size == 0); } public int size () { return size; } public int before (int place) throws InvalidPositionException { return (searchNode(place)).getPrev().getPosition(); } public int after (int place) throws InvalidPositionException { return (searchNode(place)).getNext().getPosition(); } public void insertFirst (int newData) { position++; PSDLNode oldFirst = header.getNext(); PSDLNode newFirst = new PSDLNode (newData, oldFirst, header, position); oldFirst.setPrev(newFirst); header.setNext(newFirst); size++; } public void insertLast (int newData) { position++; PSDLNode oldLast = trailer.getPrev(); PSDLNode newLast = new PSDLNode (newData, trailer, oldLast, position); oldLast.setNext(newLast); trailer.setPrev(newLast); size++; }

public PSDLNode deleteFirst () { PSDLNode oldFirst = header.getNext(); PSDLNode newFirst = oldFirst.getNext(); newFirst.setPrev(header); header.setNext(newFirst); size--; return oldFirst; } public PSDLNode deleteLast () { PSDLNode oldLast = trailer.getPrev(); PSDLNode newLast = oldLast.getPrev(); trailer.setPrev(newLast); newLast.setNext(trailer); size--; return oldLast; } private PSDLNode searchNode (int position) throws InvalidPositionException { PSDLNode current = header.getNext(); while (current != trailer) { if (current.getPosition () == position) return current; else current = current.getNext(); } throw new InvalidPositionException ("An invalid position was passed to the searchNode method."); }

public int delete (int place) throws InvalidPositionException { PSDLNode temp = searchNode (place); int oldItem = temp.getData(); PSDLNode oldNext = temp.getNext(); PSDLNode oldPrev = temp.getPrev(); oldNext.setPrev(oldPrev); oldPrev.setNext(oldNext); size--; return oldItem; } public int replace (int place, int newData) throws InvalidPositionException { PSDLNode temp = searchNode (place); int oldItem = temp.getData(); temp.setData(newData); return oldItem; } public void swap (int place1, int place2) throws InvalidPositionException { PSDLNode node1 = searchNode(place1); PSDLNode node2 = searchNode(place2); PSDLNode temp = new PSDLNode(); temp.setData(node1.getData()); node1.setData(node2.getData()); node2.setData(temp.getData()); }

public void insertBefore (int place, int newData) throws InvalidPositionException { position++; PSDLNode temp = searchNode (place); PSDLNode newNode = new PSDLNode (newData, temp, temp.getPrev(), position); temp.getPrev().setNext(newNode); temp.setPrev(newNode); size++; } public void insertAfter (int place, int newData) throws InvalidPositionException { position++; PSDLNode temp = searchNode (place); PSDLNode newNode = new PSDLNode (newData, temp.getNext(), temp, position); temp.getNext().setPrev(newNode); temp.setNext(newNode); size++; } public int last () { return (trailer.getPrev().getPosition()); } public int first () { return (header.getNext().getPosition()); }

public boolean search (int key) { boolean result = false; PSDLNode current = header.getNext(); while (current != trailer) { if (current.getData () == key) { result = true; return result; } else current = current.getNext(); } return result; } public void traverse () { System.out.println ("Current list: "); PSDLNode current = header.getNext(); while (current != trailer) { current.displayPSDLNode (); current = current.getNext(); } System.out.println (); } } // the class PSDLLADT ends here

Iterators and Enumerators An iterator is a software construct that scans through a collection of items, processing one item at a time. To specify an iterator, we have to define: 1.a sequence of items, S, 2.a starting position in S, and 3.a way of accessing the next position in S. Java has a class called Enumeration (part of java.util package), which is a simple iterator that allows for only one pass through the sequence. It has two methods:  hasMoreElements(); returns true if the Enumeration object contains more items.  nextElement(); returns a reference to the next elements in the Enumeration. If no next element exists, an exception NoSuchElementException is thrown. An Enumerator object can use a Vector object to refer to a sequence of items. For example, the statement Enumeration enum = vector.elements(); uses Vector method elements to return a reference to Enumeration object, enum, containing the elements of the Vector object, vector. Now, enum.hasMoreElements(); returns true if more elements remain in the enum object.

Download ppt "The Ranked Sequence ADT Definition A ranked sequence is a collection of items arranged in a linear order, where each item has a rank defining the relative."

Similar presentations