Presentation is loading. Please wait.

Presentation is loading. Please wait.

RESISTANCE EXERCISE LENNY AGUSTARIA B, SS.

Similar presentations


Presentation on theme: "RESISTANCE EXERCISE LENNY AGUSTARIA B, SS."— Presentation transcript:

1 RESISTANCE EXERCISE LENNY AGUSTARIA B, SS

2 1. PERFORMA OTOT PENGERTIAN: STRENGTH POWER ENDURANCE PRINSIP OVERLOAD
PRINSIP SAID PRINSIP REVERSIBILITY

3 STRENGTH PENGERTIAN UMUM: KEMAMPUAN JARINGAN KONTRAKTIL UNTUK MENGHASILKAN TEGANGANG DAN GAYA RESULTAN BERDASARKAN KEBUTUHAN BAGIAN OTOT YANG MEMBUTUHKAN PENGERTIAN SPESIFIK: KEKUATAN TERBESAR YANG TERUKUR DAN YANG DAPAT DIGUNAKAN OLEH OTOT/ KELOMPOK OTOT UNTUK MENGATASI TAHANAN DARI SUATU USAHA MAKSIMUM

4 FUNCTIONAL STRENGTH KEMAMPUAN SISTEM NEUROMUSKULAR UNTUK MENGHASILKAN, MENGURANGI ATAU MENGONTROL GAYA (MENAHAN ATAU MELAWAN) SELAMA AKTIFITAS FUNGSIONAL UNTUK MENGHASILKAN GAYA YANG HALUS DAN TERKOORDINASI

5 STRENGTH TRAINING/ STRENGTH EXERCISE
SUATU PROSEDUR SISTEMATIK DARI OTOT/ KELOMPOK OTOT DALAM MENGANGKAT, MENURUNKAN ATAU MENGONTROL BEBAN BERAT (RESISTEN) PADA JUMLAH REPETISI YANG KECIL ATAU PADA WAKTU YANG SINGKAT.

6 POWER MEMPUNYAI HUBUNGAN DENGAN STRENGTH DAN KECEPATAN GERAK
SUATU KARYA (USAHA X JARAK) YANG DIHASILKAN OLEH OTOT PER UNIT DALAM SUATU WAKTU (USAHA X JARAK/ WAKTU) DENGAN KATA LAIN POWER= RATE DALAM MELAKUKAN USAHA

7 ENDURANCE KEMAMPUAN UNTUK MELAKUKAN AKTIVITAS DENGAN INTENSITAS RENDAH, BERULANG- ULANG DAN TERUS MENERUS DALAM JANGKA WAKTU YANG LAMA

8 PRINSIP OVERLOAD YAITU OTOT HARUS MENERIMA BEBAN YANG MELEBIHI KAPASITAS METABOLIK YANG UMUMNYA DITERIMA SEHINGGA OTOT TERTANTANG MENGHASILKAN USAHA YANG LEBIH BESAR SETELAH MASA PEMULIHAN

9 PRINSIP SAID SAID SPECIFIC ADAPTATION TO IMPOSED DEMAND
LATIHAN HARUS SECARA KHUSUS UNTUK EFEK YANG DIINGINKAN METODE DAN BEBAN LATIHAN YANG DIBERIKAN HARUS SPESIFIK DAN TEPAT

10 PRINSIP REVERSIBILITY
PERFORMA OTOT AKAN MENURUN JIKA LATIHAN TIDAK DILANJUTKAN

11 2. FUNGSI OTOT SKELET DAN ADAPTASI RESISTANCE EXERCISE
Determinants and Correlates that Affect Tension Generation of Skeletal Muscl Factor Influence Cross-section and size of the muscle (includes muscle fiber number and size) The larger the muscle diameter, the greater its tension-producing capacity Fiber arrangement and fiber length (also relates to cross-sectional diameter of the muscle) Short fibers with pinnate and multipinnate design in high force producing muscles (ex. quadriceps, gastrocnemius, deltoid, biceps brachii) Long parallel design in muscles with high rate of shortening but less force production (ex. sartorius, lumbricals) Fiber-type distribution of muscle: type I (tonic, slow-twitch) and type IIA & IIB (phasic, fast-twitch) High percentage of type I fibers: low force production, slow rate of maximum force development, resistant to fatigue High percentage of type IIA and IIB fibers: rapid high forceproduction; rapid fatigue Length-tension relationship of muscle at time of contraction Muscle produces greatest tension when it is near or at thephysiological resting position at the time of contraction Recruitment of motor units The greater the number and synchronization of motor unitsfiring, the greater the force production Frequency of firing of motor units The higher the frequency of firing, the greater the tension Type of muscle contraction Force output from greatest to least: eccentric, isometric,concentric muscle contraction Speed of muscle contraction (force-velocity relationship) Concentric contraction: ↑ speed → ↓ tension. Eccentric contraction: ↑ speed → ↑ tension

12 Muscle Fiber Types and Resistance to Fatigue
Characteristics Type I Type IIA Type IIB Resistance to fatigue High Intermediate Low Capillary density Energy system Aerobic Anerobic Diameter Small Large Twitch rate Slow Fast Maximum muscle- Shortening velocity

13 Summary of Age-Related Changes in Muscle and Muscle Performance
Infancy, Early Childhood, and Preadolescence • At birth, muscle accounts for about 25% of body weight. • Total number of muscle fibers is established prior to or early during infancy. • Postnatal changes in distribution of type I and type II fibers in muscle are relatively complete by the end of the first year of life. • Muscle fiber size and muscle mass increase linearly from infancy to puberty. • Muscle strength and muscle endurance increase linearly with chronological age in boys and girls throughout child-hood until puberty. • Muscle mass (absolute and relative) and muscle strength is just slightly greater (approximately 10%) in boys than girls from early childhood to puberty. • Training-induced strength gains occur equally in both sexes during childhood without evidence of hypertrophy until puberty. Puberty • Rapid acceleration in muscle fiber size and muscle mass, especially in boys. During puberty, muscle mass increases more than 30% per year. • Rapid increase in muscle strength in both sexes. • Marked difference in strength levels develops in boys and girls. • In boys, muscle mass and body height and weight peak before muscle strength; in girls, strength peaks before body weight. • Relative strength gains as the result of resistance training are comparable between the sexes, with significantly greater muscle hypertrophy in boys.

14 LANJUTAN Young and Middle Adulthood
• Muscle mass peaks in women between 16 and 20 years of age; muscle mass in men peaks between 18 and 25 years of age. • Decreases in muscle mass occur as early as 25 years of age. • Muscle mass constitutes approximately 40% of total body weight during early adulthood, with men having slightly more muscle mass than women. • Strength continues to develop into the second decade, especially in men. • Muscle strength and endurance reach a peak during the second decade, earlier for women than men. • By sometime in the third decade, strength declines between 8% and 10% per decade through the fifth or sixth decade. • Strength and muscle endurance deteriorate less rapidly in physically active versus sedentary adults. • Improvements in strength and endurance are possible with only a modest increase in physical activity. Late Adulthood • Rate of decline of muscle strength accelerates to 15% to 20% per decade during the sixth and seventh decades and increases to 30% per decade thereafter. • Loss of muscle mass continues; by the eighth decade, skeletal muscle mass has decreased by 50% compared to peak muscle mass during young adulthood. • Muscle fiber size (cross-sectional area), type I and type II fiber numbers, and the number of alpha motoneurons all decrease. Preferential atrophy of type II muscle fibers occurs. • Decrease in the speed of muscle contractions and peak power. • Gradual but progressive decrease in endurance and maximum oxygen uptake. • Loss of flexibility reduces the force-producing capacity of muscle. • Minimal decline in performance of functional skills during the sixth decade. • Significant deterioration in functional abilities by the eighth decade associated with a decline in muscular endurance. • With a resistance training program, a significant improvement in muscle strength, power, and endurance is possible during late adulthood. • Evidence of the impact of resistance training on the level of performance of functional motor skills is mixed but promising.

15 Physiological Adaptations to Resistance Exercise
Variable Strength Training Adaptations Endurance Training Adaptations Skeletal muscle structure Hypertrophy of muscle fibers; greater in type II fibers Hyperplasia (possibly) of Muscle fibers Fiber type composition: remodeling of type IIB to type IIA; no change in type I to type II distribution (i.e., no conversion) Capillary bed density: ↓ or no change Mitochondrial density and volume: ↓ Hypertrophy: minimal or no change Capillary bed density: ↑ Mitochondrial density and volume: ↑ Neural system Motor unit recruitment: ↑ # motor units firing Rate of firing: ↑ (↓ twitch contraction time) Synchronization of firing: ↑ Metabolic system ATP and CP storage: ↑ Myoglobin storage: ↑ Stored triglycerides: not known Stored triglycerides: ↑ Enzymes Creatine phosphokinase: ↑ Myokinase: ↑ Similar ↑ Body composition Lean body (fat-free) mass: ↑ % body fat: ↓ Lean body (fat-free) mass: no change % body fat: ↓ Connective tissue Tensile strength of tendons, ligaments, and connective tissue in muscle: ↑ Bone: ↑ bone mineral density; no change or possible ↑ in bone mass Bone: ↑ mineralization with weight- bearing activities

16 3. FAKTOR PENENTU RESISTANCE EXERCISE
• Alignment of segments of the body during exercise • Stabilization of proximal or distal joints to prevent substitution • Intensity: the exercise load (level of resistance) • Volume: the total number of repetitions and sets in an exercise session multiplied by the resistance used • Exercise order: the sequence in which muscle groups are exercised during an exercise session • Frequency: the number of exercise sessions per day or perweek • Rest interval: time allotted for recuperation between sets and sessions of exercise • Duration: total time frame of a resistance training program • Mode of exercise: type of muscle contraction, position of the patient, form (source) of resistance, arc of movement, or the primary energy system utilized • Velocity of exercise • Periodization: variation of intensity and volume during specific periods of resistance training • Integration of exercises into functional activities: use of resistance exercises that approximate or replicate functional demands

17 Alignment and Stabilization
Alignment and muscle action. Alignment and gravity. Stabilization: External stabilization, Internal stabilization

18 Intensity the amount of resistance (weight) imposed on the contracting muscle during each repetition of an exercise. Submaximal loading. Exercise at moderate to low intensities Near maximal or maximal loading. High- intensity exercise

19 Initial Level of Resistance (Load) and Documentation of Training Effects
Repetition Maximum : the greatest amount of weight (load) a muscle can move through the available range of motion (ROM) a specific number of times. 1 RM (the greatest amount of weight a subject can lift through the available ROM just one time) as the baseline measurement of a subject’s maximum effort it is a frequently used, safe and reliable measurement tool method for healthy young adults and athletes as well as active older adults prior to beginning conditioning programs.

20 Use of a 1 RM as a baseline measurement of dynamic strength is inappropriate for some patient populations because it requires one maximum effort. It is not safe for patients, for example, with joint impairments, patients who are recovering from or who are at risk for soft tissue injury, or patients with known or at risk for osteoporosis or cardiovascular pathology. 10 RM (the amount of weight that could be lifted and lowered exactly 10 times) during training

21 Percentage of Body Weight as an Initial Exercise Load
• Universal bench press: 30% body weight • Universal leg extension: 20% body weight • Universal leg curl: 10% to 15% body weight • Universal leg press: 50% body weight

22 Alternative Methods of Determining Baseline Strength and a Beginning Exercise Load
Training Zone Volume: Repetitions and Sets Exercise Order Frequency Duration Rest Interval (Recovery Period) Mode of Exercise

23 Velocity of Exercise Periodization Integration of Function

24 Alternative Methods of Determining Baseline Strength and a Beginning Exercise Load
Training Zone: low (30% to 40%) for sedentary, untrained individuals or very high (80% to 95%) for Those already highly trained. For healthy but untrained adults, a typical training zone usually falls between 60% and 70% of an RM. The lower percentage of this range is safer at the beginning of a program to enable an individual to focus on learning exercise form and technique. Volume: Repetitions and Sets To Improve Muscle Strength? OR To Improve Muscle Endurance?

25 To Improve Muscle Strength:
DeLorme’s early studies three sets of a 10 RM performed for 10 repetitions over the training period led to gains in strength. Current recommendations are to use an exercise load that causes fatigue after 6 to 12 repetitions for two to three sets (6 to 12 RM). When fatigue nolonger occurs after the target number of repetitions has been completed, the level of resistance is increased to once again overload the muscle.

26 To Improve Muscle Endurance:
Training to improve local endurance involves performing many repetitions of an exercise against a submaximal load, the load can be increased slightly. Endurance training can also be accomplished by maintaining an isometric muscle contraction for incrementally longer periods of time.

27 Exercise Order in a single session, as is often the case in rehabilitation or conditioning programs, large muscle groups should be exercised before small muscle groups and multijoint muscles before single-joint muscles. In addition, after an appropriate warm-up, higher intensity exercises should be performed before lower intensity exercises.

28 Frequency: Initially in an exercise program, so long as the intensity and number of repetitions are low, short sessions of exercises sometimes can be performed on a daily basis several times per day. This frequency is often indicated for early postsurgical patients when the operated limb is immobilized and the extent of exercise is limited to low- intensity isometric (setting) exercises to prevent or minimize atrophy.

29 As the intensity and volume of exercise increases, every other day or up to five exercise sessions per week is common. Frequency is again reduced for a maintenance program, usually to two times per week. With prepubescent children and the very elderly, frequency is usually limited to two to three sessions per week. Highly trained athletes involved in body building, power lifting, and weight lifting who know their own response to exercise often train at a high intensity and volume up to 6 days per week.

30 Duration the total number of weeks or months during which a resistance exercise program is carried out. strength gains, observed early in a resistance training program (after 2 to 3 weeks) are the result of neural adaptation. For signiifi-cant changes to occur in muscle, such as hypertrophy or increased vascularization, at least 6 to 12 weeks of resistance training is required.

31 Rest Interval (Recovery Period)
Purpose of Rest Intervals: necessary to allow time for the body to recuperate from the acute effects of exercise associated with muscle fatigue or to offset adverse responses, such as exercise induced, delayed-onset muscle soreness. Only with an appropriate balance of progressive loading and adequate rest intervals can muscle performance improve.

32 Integration of Rest into Exercise:
In general, the higher the intensity of exercise the longer the rest interval. For moderate-intensity resistance training, a 2- to 3-minute rest period after each set is recommended. A shorter rest interval is adequate after low-intensity exercise; longer rest intervals (4 to 5 minutes) are appropriate with high-intensity resistance training, particularly when exercising large, multijoint muscles, such as the hamstrings, which tend to fatigue rapidly.

33 Patients with pathological conditions that make them more susceptible to fatigue, as well as children and the elderly, should rest at least 3 minutes between sets by performing an unresisted exercise, such as low intensity cycling, or performing the same exercise with the opposite extremity. Rest between exercise sessions must also be considered. When strength training is initiated at moderate intensities (typically in the intermediate phase of a rehabilitation program after soft tissue injury) a 48-hour rest interval between exercise sessions (that is, training every other day) allows the patient adequate time for recovery.

34 Mode of Exercise the type of muscle contraction that occurs, and the manner in which the exercise is carried out. For example, a patient may perform an exercise dynamically or statically or in a weight- bearing or non-weight-bearing position. Mode of exercise also encompasses the form of resistance, that is, how the exercise load is applied. Resistance can be applied manually or mechanically.

35 Mode of Exercise Type of Muscle Contraction: dynamic concentric, isometric, dynamic eccentric Position for Exercise: Weight-Bearing or Non- Weight-Bearing Forms of Resistance: Manual resistance and mechanical resistance, A constant or variable load, Accommodating resistance, Body weight or partial body weight

36 Energy Systems: Anaerobic exercise, Aerobic exercise
Range of Movement: Short-Arc or Full-Arc Exercise Application to Function

37 Velocity of Exercise

38 Concentric Muscle Contraction
Eccentric Muscle Contraction Application to Resistance Training: Isokinetic training using velocity spectrum rehabilita- tion regimens, and plyometric training emphasize high-speed training.

39 Periodization systematic varia tion in exercise intensity and repetitions, sets, or frequency at regular intervals over a specified period of time. This approach to training was developed for highly trained athletes preparing for competitive weight- lifting or power-lifting events. The concept was designed to prevent overtraining and psychological staleness prior to competition and to optimize performance during competition.

40 Periodization

41 Integration of Function
Balance of Stability and Active Mobility Balance of Strength, Power, and Endurance Task-Specific Movement Patterns During Resistance Exercise

42 4. TIPE RESISTANCE EXERCISE
Manual and Mechanical Resistance Exercise Isometric Exercise (Static Exercise) Dynamic Exercise—Concentric and Eccentric Dynamic Exercise—Constant and Variable Resistance Isokinetic Exercise Open-Chain and Closed-Chain Exercise

43

44

45 ISOMETRIC tdd: Muscle-setting exercises, Stabilization exercises, Multiple-angle isometrics. Characteristics and Effects of Isometric Training Intensity of muscle contraction. Duration of muscle activation. Repetitive contractions. Joint angle and mode specificity. CONTRAINDICATION:

46

47 Dynamic Exercise—Concentric and Eccentric

48 Rationale for Use of Concentric and Eccentric Exercise
Characteristics and Effects of Concentric and Eccentric Exercise: Exercise load, Velocity of exercise, Energy expenditure, Mode specificity, Exercise-induced muscle soreness.

49 Dynamic Exercise—Constant and Variable Resistance

50 Isokinetic Exercise Isokinetic exercise is a form of dynamic exercise in which the velocity of muscle shortening or lengthening and the angular limb velocity is predetermined and held constant by a rate-limiting device known as an isokinetic dynamometer (Fig. 6.9). The term isokinetic refers to movement that occurs at an equal (constant) velocity. Isokinetic exercise is also called accommodating resistance exercise.

51

52

53 Characteristics of Isokinetic Training
Constant velocity. Range and selection of training velocities: from very slow to fast velocities Reciprocal versus isolated muscle training. Specificity of training. Compressive forces on joints Accommodation to fatigue Accommodation to a painful arc. Training Effects and Carryover to Function

54 Special Considerations for Isokinetic Training
Availability of Equipment Appropriate Setup Initiation and Progression of Isokinetic Training During Rehabilitation

55

56 Open-Chain and Closed-Chain Exercise

57

58

59

60 5. PRINSIP UMUM RESISTANCE EXERCISE

61 Examination and Evaluation
Preparation for Resistance Exercises Application of Resistance Exercises: Warm Up, Placement of Resistance, Direction of Resistance, Stabilization, Intensity of Exercise/ Amount of Resistance , Volume/ Number of Repetitions and Sets and Rest Intervals, Verbal or Written Instructions, Monitoring the Patient, Cool Down

62

63

64 6. PRECAUTIONS RESISTANCE EXERCISE
Valsalva Maneuver: terjadinya penutupan glottis saat melakukan ekspirasi, harus dihindari selama melakukan resistance exercise. Substitute Motions Overtraining and Overwork Exercise-Induced Muscle Soreness: Acute Muscle Soreness, Delayed-Onset Muscle Soreness Pathological Fracture

65

66

67

68

69 7. KONTRAINDIKASI RESISTANCE EXERCISE
Inflammation: inflammatory neuromuscular diseaseabsolute. For example, in patients with acute anterior horn cell disease (Guillain-Barré) or inflammatory muscle disease (polymyositis, dermatomyositis), acute inflammation of a joint.

70 Severe Cardiopulmonary Disease:
Severe cardiac or respiratory diseases or disorders associated with acute symptoms (severe coronary artery disease, carditis, or cardiac myopathy) . Resistance training should be postponed for up to 12 weeks after myocardial infarction or coronary artery bypass graft surgery or until the patient has clearance from a physician.

71 TUGAS APA YANG DIMAKSUD DENGAN: POWER TRAINING AEROBIC POWER
ANAEROBIC POWER CARDIOPULMONARY ENDURANCE MUSCLE ENDURANCE ENDURANCE TRAINING SPECIFITY OF TRAING TRANSFER OF TRAINING

72 SEBUTKAN APA YANG DIMAKSUD DENGAN, CONTOH LATIHAN, INDIKASI DAN KONTRA INDIKASI, KEUNTUNGAN DAN KERUGIAN DARI ISOMERIC, DYNAMIC DAN ISOKINETIC EXERCISE BUAT DESIGN LATIHAN RESITANCE UNTUK KELOMPOK ANAK-ANAK (LAKILAKI DAN PEREMPUAN) US IA 7-9 TAHUN (SOCCER PLAYER) YANG MENCAKUP: JENIS LATIHAN. ALAT YANG DIGUNAKAN. INTENSITAS, VOLUME, FREKUENSI DAN REST

73 JELASKAN DAN BERIKAN CONTOH YANG DIMAKSUD DENGAN Muscle-setting exercises, Stabilization exercises, Multiple-angle isometrics. BUAT ANALISA 5 AKTIVITAS SEHARI-HARI/ AKTIVITAS REKREASI DAN IDETIFIKASI MUSCLE PERFORMANCE (STRENGTH, POWER, ENDURANCE) DAN FUNCTION PERFORMANCE (MOBILITY/ FLXIBILITY, STABILITY, BALANCE, KOORDINASI) YANG TERLIBAT SEBUTKAN PERUBAHAN INTI YANG TERJADI SEPANJANG DAUR KEHIDUPAN PADA PERFORMA OTOT (STRENGH, POWER, ENDURANCE) SEBUTKAN KONDISI YANG DAPAT DIBERIKAN LATIHAN RESISTANCE DAN MENGAPA?

74 TERIMAKASIH


Download ppt "RESISTANCE EXERCISE LENNY AGUSTARIA B, SS."

Similar presentations


Ads by Google