Download presentation

Presentation is loading. Please wait.

Published byMelanie Walden Modified over 2 years ago

1
A UNIFIED FRAMEWORK FOR TESTING LINEAR-INVARIANT PROPERTIES ARNAB BHATTACHARYYA CSAIL, MIT (Joint work with ELENA GRIGORESCU and ASAF SHAPIRA)

2
Property Testing Does the object have a given property P or is it -far from having P ? Input Object an -fraction of the representation of the object needs to be modified Queries P is (one-sided) testable if the number of queries needed to always accept positive inputs and reject negative inputs with probability >90% can be made independent of size of the input.

3
Properties of Functions Origins of property testing in testing algebraic properties for program checking & PCP’s [Blum- Luby-Rubinfeld ‘93, Rubinfeld-Sudan ‘96] Input objects are functions on a vector space Distance of function to property P measured by smallest Hamming distance to evaluation table of a function satisfying P

4
Properties of Boolean Functions For this talk, focus on Boolean functions on the hypercube f: F 2 n → {0,1} Examples of testable properties of Boolean functions: Is function f: F 2 n → F 2 linear, i.e. f(x+y)=f(x)+f(y) for all x,y? [BLR ’93] More generally, is it of degree at most d? [Alon-Kaufman- Krivelevich-Litsyn-Ron ‘03] Fourier dimensionality and sparsity [Gopalan-O’Donnell- Servedio-Shpilka-Wimmer ‘09] What are all the testable algebraic properties? Want the “shortest” explanation for testability.

6
(Dense) Graph Properties Graph properties are invariant with respect to vertex relabelings. 1 2 3 4 5 Input graph represented by its adjacency matrix Distance to property P measured by smallest Hamming distance to adjacency matrix of a graph satisfying P. Examples: bipartiteness, 3-colorability, triangle-freeness, … [Goldreich-Goldwasser-Ron ‘98]

7
Testability of Graph Properties All hereditary graph properties are testable with one- sided error. [Alon-Shapira ‘05] P is hereditary if for any graph G satisfying P, every induced subgraph of G also satisfies P. “All” testable properties (with one-sided error) are hereditary! Full characterization given by [Alon-Fischer-Newman- Shapira ’06], [Borgs-Chayes-Lovasz-Sos-Szegedy- Vesztergombi ’06]

8
Forbidden Induced Subgraphs Given fixed collection of graphs F, a graph G is said to be F -free if G does not contain any graph in F as an induced subgraph. Bipartiteness: F is infinite A graph property is hereditary iff it is equal to F - freeness for some collection of graphs F.

10
Linear Invariance [Kaufman-Sudan ‘07] observed that most natural properties of Boolean functions invariant under linear transformations of domain If f: F 2 n → {0,1} in property P, then f o L also in P for every linear map L: F 2 n → F 2 n [KS ‘07] showed testability for linear-invariant properties if they formed a subspace and are “locally characterized” Challenge to characterize all linear-invariant testable properties [Sudan ‘10]

11
Subspace Hereditariness Linear-invariant property P is subspace-hereditary if: for any function f: F 2 n → {0,1} satisfying P, restriction of f to any linear subspace of F 2 n also satisfies P.

12
Our Main Conjecture All subspace-hereditary linear-invariant properties are testable.

13
Implied Characterization Implication: A linear-invariant property is one-sided testable “iff” it is subspace-hereditary Restriction to testers whose behavior doesn’t depend on value of n “Only if” direction is a theorem [BGS10], not conjecture. Shows importance of notion of subspace-hereditariness.

14
Progress towards conjecture We show testability of a large subclass of subspace- hereditary properties Those characterized by forbidding solutions to systems of equations of complexity 1 Technique: constructing robust arithmetic regularity lemmas Proof of full conjecture along similar lines would depend on developing arithmetic regularity lemmas with respect to higher-order Gowers norms over F 2. All subspace-hereditary linear-invariant properties are testable

15
Forbidden Linear System Given m-by-k matrix M over F 2, say subset S of F 2 n is M-free if there is no x = (x 1, …,x k ) with each x i in S such that Mx = 0. Example: If M=[1 1 1], then M-freeness is property of having no x, y, x+y all in the set Always a monotone property

16
Forbidden “Induced” Linear System Given m-by-k matrix M over F 2 and a binary string in {0,1} k, say function f: F 2 n → {0,1} is (M, )-free if there is no x = (x 1, …,x k ) with each x i in F 2 n and Mx = 0, such that: f(x i ) = i for all i in [k] Example: With m=1, k=3, M=[1 1 1] and =001, (M, )-freeness is property of having no x,y with f(x)=f(y)=0 and f(x+y)=1.

17
Forbidden Family of Linear Systems Given fixed collection F = {(M 1, ), (M 2, ),…}, a function f: F 2 n → {0,1} is F -free if it is (M i, i )-free for every i. Example: If M=[1 1 1], =111 and =001 and F ={(M, ), (M, )}, then F -freeness is linearity No x, y with f(x) + f(y) + f(x+y) = 1 Similarly for Reed-Muller codes

18
Forbidden Family of Linear Systems Given fixed (possibly infinite) collection F = {(M 1, ), (M 2, ),…}, a function f: F 2 n → {0,1} is F -free if it is (M i, i )-free for every i. Property may no longer be “locally characterized”, a requirement in [Kaufman-Sudan ‘07] Example: ODD-CYCLE-FREENESS (to be discussed tomorrow by Asaf)

19
Why forbidden linear systems? Fact: Property P is characterized by F -freeness for some collection F iff it is a subspace-hereditary linear-invariant property

20
Why forbidden linear systems? Fact: Property P is characterized by F -freeness iff it is a subspace-hereditary linear-invariant property Property being subspace-hereditary means certain restrictions to subspaces are forbidden. Linear systems encode these subspaces, pattern strings encode the forbidden restrictions on them

21
Our Main Conjecture F -freeness is testable, for any fixed collection F.

22
Our Main Result F -freeness is testable, where F = {(M 1, ), (M 2, ),…} is possibly infinite, each is arbitrary, and each M i is of complexity 1.

23
Complexity of Linear Systems Introduced by [Green-Tao ‘06]. Also called “Cauchy-Schwarz complexity” [Gowers-Wolf ‘07]. Every system of equations assigned a complexity. Exact definition unimportant for purposes of this talk. Any system of rank at most 2 is of complexity 1 Linear systems used to define RM codes of order d have complexity d

24
Our Main Result F -freeness is testable, where F = {(M 1, ), (M 2, ),…} is possibly infinite, each is not necessarily all-ones, and each M i is of complexity 1. Linearity is testable…once again Price of generality: bound on the query complexity is extremely weak in terms of distance parameter (tower of exponentials)

25
Previous Work Testability results: [Green ‘05]: (M, )-freeness for M with rank 1 and is all-ones. [B.-Chen-Sudan-Xie ‘09]: (M, )-freeness for M of complexity 1 and is all-ones [Kràl’-Serra-Vena ‘09, Shapira ‘09]: F -freeness where F is finite collection, each M of arbitrary complexity but each still all-ones

26
Regularity Partitioning H F2nF2n Restriction not “pseudorandom” Restriction “pseudorandom” [G ‘05]: Can choose H such that very few shifts are red, and # of cosets independent of n. Say f is “pseudorandom” if it does not correlate well with any nonzero linear function.

27
Green’s Regularity Lemma For every , given function f: F 2 n → {0,1}, there is a subspace H of codimension at most T( such that f H +g is not -regular for < 2 n many shifts g. -regular: correlation with every nonzero linear function at most .

28
Regularity Lemma: Functional version Actual statement used in the proof more complicated

29
A tester T is oblivious if it inspects a uniformly chosen random subspace and then acts the same independent of the value of n First condition is without loss of generality Theorem: Any linear-invariant property that is one- sided testable by an oblivious tester is semi- subspace-hereditary. } << One-sided testers and hereditariness Semi-subspace-hereditary property Subspace-hereditary property

30
Other Open Questions Testability over other fields? Testability of non-Boolean functions? Are there better query complexity upper bounds, even for Green’s problem? Best lower bound only poly(1 ) [B.-Xie ’10] Characterization with respect to other invariance groups?

31
Thanks!

Similar presentations

OK

1 On the Benefits of Adaptivity in Property Testing of Dense Graphs Joint work with Mira Gonen Dana Ron Tel-Aviv University.

1 On the Benefits of Adaptivity in Property Testing of Dense Graphs Joint work with Mira Gonen Dana Ron Tel-Aviv University.

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Ppt on retail marketing strategy Ppt on design and analysis of algorithms Ppt on magic squares Jit ppt on manufacturing company Ppt online open course Ppt on formal education articles Ppt on javascript events on change Seminar ppt on cloud computing Ppt on medical image processing Ppt on 60 years of indian parliament session