Presentation is loading. Please wait.

Presentation is loading. Please wait.

MASS WASTING. SURFICIAL PROCESSES Erosion, Transportation, Deposition on the Earth’s Surface Landscapes created and destroyed Involves atmosphere, water,

Similar presentations


Presentation on theme: "MASS WASTING. SURFICIAL PROCESSES Erosion, Transportation, Deposition on the Earth’s Surface Landscapes created and destroyed Involves atmosphere, water,"— Presentation transcript:

1 MASS WASTING

2

3 SURFICIAL PROCESSES Erosion, Transportation, Deposition on the Earth’s Surface Landscapes created and destroyed Involves atmosphere, water, gravity Agents: –Mass wasting (gravity), Running water (streams), glaciers (ice), wind, water waves, ground water

4 MASS WASTING Masses of debris (mud, sand, gravel) or bedrock moving downhill Landslides and slower movements Driven by GRAVITY

5 Classification of Mass Wasting RATE of MOVEMENT –Extremely slow (~1mm/year) to very rapid (>100 km/hour) MATERIAL –Bedrock –Debris- (“soil”, sediment)

6 Classification of Mass Wasting TYPE OF MOVEMENT –Flow –Slide Translational slide Rotational slide (Slump) –Fall

7

8

9

10

11 Classification of Mass Wasting TYPE OF MOVEMENT –Flow –Slide Translational slide Rotational slide (Slump) –Fall

12

13 Controlling Factors Slope angle- gentle vs steep Local relief- low vs high Thickness of debris over bedrock- slight vs great Planes of weakness ( in bedrock) –bedding planes; foliation; joints –planes at right angle to slope vs parallel to slope most dangerous

14

15

16 Controlling Factors Climatic controls –Ice- above freezing vs freeze & thaw –Water in soil- film around grain vs saturation –Precipitation- frequent but light vs periods of drought and heavy rainfall –Vegetation- heavily vegetated vs light or no vegetation Gravity –Shear force- parallel to slope, block’s ability to move –Normal force- perpendicular to slope, block’s ability to stay in place due to friction –Shear strength- resistance to movement or deformation of debris

17 The Effect of Slope & Gravity G=gravity S=shear F=friction N=normal S GN F

18 Controlling Factors Water –adds weight –increased pore pressure in saturated debris decreases shear strength –surface tension in unsaturated debris increases shear strength Triggering Mechanisms –Overloading –Undercutting –Earthquakes

19

20 Common types of mass wasting CREEP –gentle slopes –vegetation slows movement –very slow flow (< 1 cm/year) facilitated by water in soil or by freeze-thaw in colder climates –Indicators of creep ‘pistol butt’ trees leaning tombstones, walls, posts

21

22

23

24

25

26

27 Solifluction & Permafrost Solifluction: –Flow of water saturated debris over impermeable material Permafrost: –Ground that remains frozen for many years

28

29

30

31

32 Common types of mass wasting DEBRIS FLOW –Motion taking place throughout moving mass –Includes Earthflow Mudflow Debris Avalanche

33 Earthflow –Primarily flow of debris –may involve rotational sliding –Scarp above –Hummocky surface in lower part –May be slow or fast –Solifluction role of Permafrost in cold climates

34

35

36 Mudflow –Flow of watery debris –Occurs where lack of vegetation: Dry climates Volcanoes After forest fires

37

38

39

40 Debris Avalanche Very rapid, turbulent flow of debris –mud-boulders >150 km/hr Triggered by –volcanic eruptions- Mt. St. Helens 1980; Nevado del Ruiz 1985 –intense rainstorms- Venezuela 1999 –earthquakes- Japan 2000

41

42

43

44 Rockfalls and Rockslides Rockfall –Bedrock breaking loose on cliffs –Talus at base of cliffs Rockslide –Bedrock involved –Sliding along planes of weakness parallel to slope Bedding planes; foliation planes; fractures in rock (joints)

45

46

47 Debris Slides and Debris Falls Debris fall –Free-falling mass of debris Debris slide –Debris moving along a well-defined surface

48

49 The St. Francis Dam The dam stood 180 feet high and 600 feet long Curved Concrete Structure

50 On March 12, 1928, after its reservoir reached full capacity for the first time, the St. Francis Dam began to leak. At 11:57 PM, the dam collapsed, sending 12 billion gallons of water raging through the narrow San Francisquito Canyon into the Santa Clara Valley. Designed and built two years earlier by William Mulholland to store water brought by the Los Angeles Aqueduct from Owens Valley. Its failure resulted in a flood which killed over 450 people and destroyed buildings, bridges, railroads, and farms. The St. Francis was only one of 19 dams that Mulholland had constructed to store Los Angeles' water supplies.

51

52

53 Preventing Landslides Preventing mass wasting of debris Preventing rockfalls and rockslides on highways

54

55

56

57

58

59

60

61

62

63

64

65

66 L.A. Against the Mountains

67

68 The 1934 flood disaster in Los Angeles basin was so horrific that Woody Guthrie composed a song called “Los Angeles New Year’s Flood” to memorialize the hundred people who were buried alive, drowned, or never found. Light rain began falling on December 30, 1933, and rapidly intensified to a downpour totaling 7.31 inches in 24 hours. By midnight on December 31, 1934, the San Gabriel Mountains, towering above the Los Angeles basin, began to discharge massive debris flows of mud, rocks and trees down dozens of steep narrow canyons. The debris flows reached the basin floor as 20- foot walls of water, as they had done for eons.

69 The Geology of the Great Los Angeles Basin The Los Angeles basin is a group of four alluvial plains named the San Gabriel Valley, Inland Valley, San Fernando Valley, and Coastal Plain. The plains are surrounded (more or less) by three mountain ranges named the Santa Monica Mountains, the San Gabriel Mountains, and the Santa Ana Mountains. The San Gabriel is by far the greatest, with peaks over 10,000 feet, just 40 or 50 miles inland from the Pacific Ocean.

70 The San Gabriel Mountains The San Gabriel Mountains orogeny spanned around 40 million years (25-65 million years ago) before accelerating in the past 1 million years. The San Gabriels are young mountains and are still rising as rapidly as any mountain range in the world. The San Gabriels rose next to a spectacular trough plunging six miles below sea level. Riddled with faults, the San Gabriels have long fractured easily and crumbled in the face of Pacific Ocean storms. The San Gabriels continue to disintegrate at one of the fastest rates in the world, but they are building up faster than they are disintegrating.

71 Debris Dam

72 Fresh sediment deposited in debris retention structure along the range front of the San Gabriel Mountains.

73 Recent large landslide covering road in the foothills of the San Gabriel Mountains

74 Small, recent shallow landslides in older scars from previous years, east of I-5 in Orange County. Debris flow that initiated from large landslide above the town of La Conchita. Debris-flow source is from large 1995 landslide.


Download ppt "MASS WASTING. SURFICIAL PROCESSES Erosion, Transportation, Deposition on the Earth’s Surface Landscapes created and destroyed Involves atmosphere, water,"

Similar presentations


Ads by Google