Presentation is loading. Please wait.

Presentation is loading. Please wait.

Progress on Building the Component Library Bruce Porter, Peter Clark Ken Barker, Art Souther, John Thompson James Fan, Dan Tecuci, Peter Yeh Charles Benton,

Similar presentations


Presentation on theme: "Progress on Building the Component Library Bruce Porter, Peter Clark Ken Barker, Art Souther, John Thompson James Fan, Dan Tecuci, Peter Yeh Charles Benton,"— Presentation transcript:

1 Progress on Building the Component Library Bruce Porter, Peter Clark Ken Barker, Art Souther, John Thompson James Fan, Dan Tecuci, Peter Yeh Charles Benton, Marwan Elrakabawy, Cheyenne Kohnlein November 1, 2000

2 The Purpose of the Component Library To represent the set of common actions, states, objects, and properties so that SME’s can build KB’s by simply instantiating and assembling them. Representing actions has been our primary focus for four months. Most team members have used a few prototype components to build relatively simple scenarios. Now we’re trying to properly build a more comprehensive set of components.

3 Refresher… Slides from kickoff meeting in New Orleans

4 BioremediationAmount OilFertilizer GetApply Break Down Absorb MicrobesScript Bio- technologist Soil Rate environment contains Q+ I- Q- I- amount product absorbed then agent patientagent script pollutant se rate agent then product se patient remediator amount Representation of Bioremediation

5 BioremediationAmount OilFertilizer GetApply Break Down Absorb MicrobesScript Bio- technologist Soil Rate environment contains Q+ I- Q- I- amount product absorbed then agent patientagent script pollutant se rate agent then product se patient remediator Conversion Amount Substance Rate Q+ I- Q- I- amountraw- materials rate product Substance amount An underlying abstraction...

6 BioremediationAmount OilFertilizer GetApply Break Down Absorb MicrobesScript Bio- technologist Soil Rate environment contains Q+ I- Q- I- amount product absorbed then agent patientagent script pollutant se rate agent then product se remediator amount Digest Substance Break Down Absorb AgentScript absorbed agent script food se then se patient eater agent Another abstraction... patient

7 BioremediationAmount Oil Fertilizer Break Down Absorb Bio- technologist Soil Rate environment contains Q+ I- Q- I- amount product absorbed then agent pollutant se rate agent GetApply MicrobesScript patient script then product se remediator amount TreatmentAgent Another abstraction... patient GetApply substanceScript patient script then substance patient se

8 The Space of Actions Based on various linguistic resources and an analysis of 2 texts by Alberts, we’re working toward this set of about 190 action components.this set We’ve built components for about half of them, as shown here.here Our coding rate has increased significantly, and we’re now able to productively add more personnel.

9 Schedule Through the end of 2000: –focus on action components, completing about 90% of those currently planned. –Start coding pump-priming knowledge, building basic representations of about 200 objects and events. January through March 2001: –Focus on exercising the component library by encoding significant portions of Alberts. This work doubles as essential pump-priming. –Begin to represent generic objects, especially “role concepts” (more on this later). –Integrate the component library with core knowledge developed by other team members (more on this later).

10 What’s in a Component? The specification gives the definition, slot constraints, and links to standard linguistic sources. Here’s an example.example The KM code gives the axioms and an explicit interface to the user. Here’s an example. Note that the code includes only local axioms; KM infers the rest. Here’s the complete expansion. exampleHere

11 Our Process for Building a Component form initial clusters of actions (e.g. transfer) based on an analysis of Alberts, Roget’s clusters, Cyc, and other linguistic sources.analysis of AlbertsRoget’s clustersCyc write a specification for each action. search Alberts for all occurrences (including all morphological variants) of each action, and make sure that the representation will accommodate them. Here’s the result of analyzing the actions in one chapter. These “coded examples”will be useful for training SME’s.AlbertsHere’s organize the actions taxonomically and pull out commonalities that can be handled with various types of composition.* code the actions in KM along with simple test cases, commit them to the CVS-managed library, and run all test cases daily. Larger scenarios will provide the next level: integration testing.* * These points will be elaborated below.

12 How to access the Component Library Click here to visit the component library.here It’s updated every day unless some test case fails. We’ll add a feature to download the entire library via FTP.

13 We want a simple, small, and slow growing set of slots. Ours currently has 78 slots (53 relations and 25 properties) and is inspired by well-studied sets of semantic roles from Linguistics, (surveyed in Ken’s dissertation). Ours The Dictionary of Slots Slots should apply intuitively to knowledge expressed informally. We have early evidence based on 3 large experiments. The semantics of the slots must be axiomatized. Here are some examples.examples Slots must make the distinctions necessary for inferencing (at least to the fidelity of the KR language) The slot language must continue to evolve.

14 Non-taxonomic composition: Clichés a cliché is a small pattern of axioms that recurs throughout the hierarchy. For example:recurs throughout the hierarchy Reflexive: requiredslot: agent, object agent=object Reciprocal: requiredslot: agent, object agent is object of an instance of this action having this object as agent Undo(A): precondition: object is the object of the resulting-state of action A postcondition: object is no longer the object of the resulting-state of action A

15 Non-taxonomic composition: Utility Concepts concepts that have natural homes within the hierarchy, but also form a part of the semantics of concepts across the hierarchyacross the hierarchy Copy: –reasonable as a standalone concept –also part of Transcribe, Forge, Encode, Reproduce, etc.

16 Many concepts in the KB are “role concepts” –e.g., container, nutrient –are generic –are highly reusable (can be applied in many concepts) “If the DNA containing the 5S rRNA genes is …” “many DNA sequences produce two or more distinct proteins” “The DNA guides the synthesis of specific RNA molecules…” “The DNA is enclosed in …” “The idea that DNA transfers information…” By separating the “model” (e.g. container) and its application (e.g. to DNA), we can apply & reuse the same model in many ways. Non-taxonomic composition: model-as

17 Traditional: “Hard-wire” models to the modeled things Applying models Better: Define machine-selectable “views” Cell generalizations: Container Consumer …? Cell model-as: Container (wall = membrane,..) Consumer (consumes = organic molecules,..) Vehicle (transported = DNA, …) …. Control when and how components apply Allows generic components to be used multiple ways (more reuse) - difficult in the traditional approach!

18 How others can contribute to the Component Library Because the Library is only 4 months old and we’ve focused on particular types of knowledge, much remains to be done. We have several suggestions for how it might be usefully expanded.suggestions

19 How SME’s might index the Component Library SME’s will undoubtedly adjust to our tools somewhat, but they start with English. We should index the Library by English terms. Here’s a simple way to do that... (next slide)

20 SME: I would like to use transport. Shaken: Which of these senses of transport would you like? - v. send from one person or place to another (see: Transfer) - v. move while supporting … (see: Carry) - v. hold spellbound - v. transport commercially - v. move something or somebody around (see: Move) - n. the commercial enterprise of transporting goods and materials - n. something that serves as a means of transportation (see: Transport-Device) - n. a mechanism to transport magnetic tape over the head … - n. an exchange of molecules across a membrane (see: Molecular-Transport) - n. a state of being carried away by overwhelming emotion We get “for free” the mapping from transport to: Transfer, Carry, Move, Transport-Device, and Molecular-Transport by linking our components to synsets in Wordnet. The red components are currently in the Library; the blue components are planned. Mapping from Verbs to Actions

21 Other types of Knowledge we’re Encoding Properties usually surface as adjectives. We have a framework for representing them, and a plan for populating the KB.Properties Pump-priming knowledge. We have proposed a scenario for Jan’01 and started to represent knowledge of biological objects. We start with taxonomies and partonomies (like SME’s build), then convert them automatically to KM. scenario taxonomiespartonomies

22 Coordinating our efforts on developing Core Knowledge The Core Knowledge Workshop in Austin next month Proposed agenda: –Address representation challenges: continuous processes, modes of existence, time, space, causality, modals and counterfactuals, … –Develop a detailed plan for integrating other core theories, such as ‘Everyday Semantics’ –Design the Core Knowledge for Shaken 1.0 Schedule: –Duration: we suggest 3 days –Dates: we suggest mid-December


Download ppt "Progress on Building the Component Library Bruce Porter, Peter Clark Ken Barker, Art Souther, John Thompson James Fan, Dan Tecuci, Peter Yeh Charles Benton,"

Similar presentations


Ads by Google