Download presentation

Presentation is loading. Please wait.

Published byBrenna Gallemore Modified about 1 year ago

1
Chapter 1

2
Solving Equations and Inequalities

3
1.1 – Expressions and Formulas

4
Order of Operations

5
1.1 – Expressions and Formulas Order of Operations Parentheses

6
1.1 – Expressions and Formulas Order of Operations Parentheses Exponents

7
1.1 – Expressions and Formulas Order of Operations Parentheses Exponents Multiplication

8
1.1 – Expressions and Formulas Order of Operations Parentheses Exponents Multiplication Division

9
1.1 – Expressions and Formulas Order of Operations Parentheses Exponents Multiplication Division Addition

10
1.1 – Expressions and Formulas Order of Operations Parentheses Exponents Multiplication Division Addition Subtraction

11
1.1 – Expressions and Formulas Order of Operations ParenthesesPlease Exponents Multiplication Division Addition Subtraction

12
1.1 – Expressions and Formulas Order of Operations ParenthesesPlease ExponentsExcuse Multiplication Division Addition Subtraction

13
1.1 – Expressions and Formulas Order of Operations ParenthesesPlease ExponentsExcuse MultiplicationMy Division Addition Subtraction

14
1.1 – Expressions and Formulas Order of Operations ParenthesesPlease ExponentsExcuse MultiplicationMy DivisionDear Addition Subtraction

15
1.1 – Expressions and Formulas Order of Operations ParenthesesPlease ExponentsExcuse MultiplicationMy DivisionDear AdditionAunt Subtraction

16
1.1 – Expressions and Formulas Order of Operations ParenthesesPlease ExponentsExcuse MultiplicationMy DivisionDear AdditionAunt SubtractionSally

17
Example 1

18
Find the value of [2(10 - 4) 2 + 3] ÷ 5.

19
Example 1 Find the value of [2(10 - 4) 2 + 3] ÷ 5. [2(10 - 4) 2 + 3] ÷ 5 =

20
Example 1 Find the value of [2(10 - 4) 2 + 3] ÷ 5. [2(10 - 4) 2 + 3] ÷ 5 = [2(6) 2 + 3] ÷ 5

21
Example 1 Find the value of [2(10 - 4) 2 + 3] ÷ 5. [2(10 - 4) 2 + 3] ÷ 5 = [2(6) 2 + 3] ÷ 5 [2(36) + 3] ÷ 5

22
Example 1 Find the value of [2(10 - 4) 2 + 3] ÷ 5. [2(10 - 4) 2 + 3] ÷ 5 = [2(6) 2 + 3] ÷ 5 [2(36) + 3] ÷ 5 [72 + 3] ÷ 5

23
Example 1 Find the value of [2(10 - 4) 2 + 3] ÷ 5. [2(10 - 4) 2 + 3] ÷ 5 = [2(6) 2 + 3] ÷ 5 [2(36) + 3] ÷ 5 [72 + 3] ÷ 5 75 ÷ 5

24
Example 1 Find the value of [2(10 - 4) 2 + 3] ÷ 5. [2(10 - 4) 2 + 3] ÷ 5 = [2(6) 2 + 3] ÷ 5 [2(36) + 3] ÷ 5 [72 + 3] ÷ 5 75 ÷ 5 15

25
Example 2

26
Evaluate x 2 – y(x + y) if x = 8 and y = 1.5.

27
Example 2 Evaluate x 2 – y(x + y) if x = 8 and y = 1.5. x 2 – y(x + y) =

28
Example 2 Evaluate x 2 – y(x + y) if x = 8 and y = 1.5. x 2 – y(x + y) = 8 2 – 1.5(8 + 1.5)

29
Example 2 Evaluate x 2 – y(x + y) if x = 8 and y = 1.5. x 2 – y(x + y) = 8 2 – 1.5(8 + 1.5) 8 2 – 1.5(8 + 1.5)

30
Example 2 Evaluate x 2 – y(x + y) if x = 8 and y = 1.5. x 2 – y(x + y) = 8 2 – 1.5(8 + 1.5) 8 2 – 1.5(8 + 1.5) 8 2 – 1.5(9.5)

31
Example 2 Evaluate x 2 – y(x + y) if x = 8 and y = 1.5. x 2 – y(x + y) = 8 2 – 1.5(8 + 1.5) 8 2 – 1.5(8 + 1.5) 8 2 – 1.5(9.5) 64 – 1.5(9.5)

32
Example 2 Evaluate x 2 – y(x + y) if x = 8 and y = 1.5. x 2 – y(x + y) = 8 2 – 1.5(8 + 1.5) 8 2 – 1.5(8 + 1.5) 8 2 – 1.5(9.5) 64 – 1.5(9.5) 64 – 14.25

33
Example 2 Evaluate x 2 – y(x + y) if x = 8 and y = 1.5. x 2 – y(x + y) = 8 2 – 1.5(8 + 1.5) 8 2 – 1.5(8 + 1.5) 8 2 – 1.5(9.5) 64 – 1.5(9.5) 64 – 14.25 49.75

34
Example 3

35
Evaluate a 3 + 2bc if a = 2, b = -4, and c = -3. c 2 – 5

36
Example 3 Evaluate a 3 + 2bc if a = 2, b = -4, and c = -3. c 2 – 5 a 3 + 2bc = c 2 – 5

37
Example 3 Evaluate a 3 + 2bc if a = 2, b = -4, and c = -3. c 2 – 5 a 3 + 2bc = 2 3 + 2(-4)(-3) c 2 – 5

38
Example 3 Evaluate a 3 + 2bc if a = 2, b = -4, and c = -3. c 2 – 5 a 3 + 2bc = 2 3 + 2(-4)(-3) c 2 – 5 (-3) 2 – 5

39
Example 3 Evaluate a 3 + 2bc if a = 2, b = -4, and c = -3. c 2 – 5 a 3 + 2bc = 2 3 + 2(-4)(-3) c 2 – 5 (-3) 2 – 5 = 8 + 2(-4)(-3)

40
Example 3 Evaluate a 3 + 2bc if a = 2, b = -4, and c = -3. c 2 – 5 a 3 + 2bc = 2 3 + 2(-4)(-3) c 2 – 5 (-3) 2 – 5 = 8 + 2(-4)(-3) 9 – 5

41
Example 3 Evaluate a 3 + 2bc if a = 2, b = -4, and c = -3. c 2 – 5 a 3 + 2bc = 2 3 + 2(-4)(-3) c 2 – 5 (-3) 2 – 5 = 8 + 2(-4)(-3) 9 – 5 = 8 + 24 9 – 5

42
Example 3 Evaluate a 3 + 2bc if a = 2, b = -4, and c = -3. c 2 – 5 a 3 + 2bc = 2 3 + 2(-4)(-3) c 2 – 5 (-3) 2 – 5 = 8 + 2(-4)(-3) 9 – 5 = 8 + 24 9 – 5 = 32 4

43
Example 3 Evaluate a 3 + 2bc if a = 2, b = -4, and c = -3. c 2 – 5 a 3 + 2bc = 2 3 + 2(-4)(-3) c 2 – 5 (-3) 2 – 5 = 8 + 2(-4)(-3) 9 – 5 = 8 + 24 9 – 5 = 32 = 8 4

44
Example 4

45
Find the area of the following trapezoid. 16 in. 10 in. 52 in.

46
Example 4 Find the area of the following trapezoid. 16 in. A = ½h(b 1 + b 2 ) 10 in. 52 in.

47
Example 4 Find the area of the following trapezoid. 16 in. A = ½h(b 1 + b 2 ) 10 in. 52 in. A = ½h(b 1 + b 2 )

48
Example 4 Find the area of the following trapezoid. 16 in. A = ½h(b 1 + b 2 ) 10 in. = h 52 in. A = ½h(b 1 + b 2 )

49
Example 4 Find the area of the following trapezoid. 16 in. = b 1 A = ½h(b 1 + b 2 ) 10 in. = h 52 in. A = ½h(b 1 + b 2 )

50
Example 4 Find the area of the following trapezoid. 16 in. = b 1 A = ½h(b 1 + b 2 ) 10 in. = h 52 in. = b 2 A = ½h(b 1 + b 2 )

51
Example 4 Find the area of the following trapezoid. 16 in. A = ½h(b 1 + b 2 ) 10 in. 52 in. A = ½h(b 1 + b 2 ) = ½10(16 + 52)

52
Example 4 Find the area of the following trapezoid. 16 in. A = ½h(b 1 + b 2 ) 10 in. 52 in. A = ½h(b 1 + b 2 ) = ½10(16 + 52) = ½10(68)

53
Example 4 Find the area of the following trapezoid. 16 in. A = ½h(b 1 + b 2 ) 10 in. 52 in. A = ½h(b 1 + b 2 ) = ½10(16 + 52) = ½10(68) = 5(68)

54
Example 4 Find the area of the following trapezoid. 16 in. A = ½h(b 1 + b2) 10 in. 52 in. A = ½h(b 1 + b 2 ) = ½10(16 + 52) = ½10(68) = 5(68) = 340

55
1.2 – Properties of Real Numbers

56
Real Numbers

57
1.2 – Properties of Real Numbers Real Numbers (R)

58
1.2 – Properties of Real Numbers Real Numbers (R)

59
1.2 – Properties of Real Numbers Real Numbers (R) Rational

60
1.2 – Properties of Real Numbers Real Numbers (R) Rational (⅓)

61
1.2 – Properties of Real Numbers Real Numbers (R) (Q) Rational (⅓)

62
1.2 – Properties of Real Numbers Real Numbers (R) (Q) Rational (⅓)

63
1.2 – Properties of Real Numbers Real Numbers (R) (Q) Rational (⅓) Integers

64
1.2 – Properties of Real Numbers Real Numbers (R) (Q) Rational (⅓) Integers (-6)

65
1.2 – Properties of Real Numbers Real Numbers (R) (Q) Rational (⅓) (Z) Integers (-6)

66
1.2 – Properties of Real Numbers Real Numbers (R) (Q) Rational (⅓) (Z) Integers (-6)

67
1.2 – Properties of Real Numbers Real Numbers (R) (Q) Rational (⅓) (Z) Integers (-6) Whole #’s

68
1.2 – Properties of Real Numbers Real Numbers (R) (Q) Rational (⅓) (Z) Integers (-6) Whole #’s (0)

69
1.2 – Properties of Real Numbers Real Numbers (R) (Q) Rational (⅓) (Z) Integers (-6) (W) Whole #’s (0)

70
1.2 – Properties of Real Numbers Real Numbers (R) (Q) Rational (⅓) (Z) Integers (-6) (W) Whole #’s (0)

71
1.2 – Properties of Real Numbers Real Numbers (R) (Q) Rational (⅓) (Z) Integers (-6) (W) Whole #’s (0) Natural #’s

72
1.2 – Properties of Real Numbers Real Numbers (R) (Q) Rational (⅓) (Z) Integers (-6) (W) Whole #’s (0) Natural #’s (7)

73
1.2 – Properties of Real Numbers Real Numbers (R) (Q) Rational (⅓) (Z) Integers (-6) (W) Whole #’s (0) (N) Natural #’s (7)

74
1.2 – Properties of Real Numbers Real Numbers (R) (Q) Rational (⅓) (Z) Integers (-6) (W) Whole #’s (0) (N) Natural #’s (1)

75
1.2 – Properties of Real Numbers Real Numbers (R) (Q) Rational (⅓) Irrational (Z) Integers (-6) (W) Whole #’s (0) (N) Natural #’s (1)

76
1.2 – Properties of Real Numbers Real Numbers (R) (Q) Rational (⅓) Irrational √ 5 (Z) Integers (-6) (W) Whole #’s (0) (N) Natural #’s (1)

77
1.2 – Properties of Real Numbers Real Numbers (R) (Q) Rational (⅓) (I) Irrational √ 5 (Z) Integers (-6) (W) Whole #’s (0) (N) Natural #’s (1)

78
Real Rational Irrational Integers Whole Natural

79
Example 1

80
Name the sets of numbers to which each apply.

81
Example 1 Name the sets of numbers to which each apply.

82
Example 1 Name the sets of numbers to which each apply.

83
Example 1 Name the sets of numbers to which each apply. (a) √ 16

84
Example 1 Name the sets of numbers to which each apply. (a) √ 16 = 4

85
Example 1 Name the sets of numbers to which each apply. (a) √ 16 = 4 - N

86
Example 1 Name the sets of numbers to which each apply. (a) √ 16 = 4 - N, W

87
Example 1 Name the sets of numbers to which each apply. (a) √ 16 = 4 - N, W, Z

88
Example 1 Name the sets of numbers to which each apply. (a) √ 16 = 4 - N, W, Z, Q

89
Example 1 Name the sets of numbers to which each apply. (a) √ 16 = 4 - N, W, Z, Q, R

90
Example 1 Name the sets of numbers to which each apply. (a)√ 16 = 4 - N, W, Z, Q, R (b)-185

91
Example 1 Name the sets of numbers to which each apply. (a)√ 16 = 4 - N, W, Z, Q, R (b)-185 - Z

92
Example 1 Name the sets of numbers to which each apply. (a)√ 16 = 4 - N, W, Z, Q, R (b)-185 - Z, Q

93
Example 1 Name the sets of numbers to which each apply. (a)√ 16 = 4 - N, W, Z, Q, R (b)-185 - Z, Q, R

94
Example 1 Name the sets of numbers to which each apply. (a)√ 16 = 4 - N, W, Z, Q, R (b)-185 - Z, Q, R (c)√ 20

95
Example 1 Name the sets of numbers to which each apply. (a)√ 16 = 4 - N, W, Z, Q, R (b)-185 - Z, Q, R (c)√ 20 - I, R

96
Example 1 Name the sets of numbers to which each apply. (a)√ 16 = 4 - N, W, Z, Q, R (b)-185 - Z, Q, R (c)√ 20 - I, R (d) -⅞

97
Example 1 Name the sets of numbers to which each apply. (a)√ 16 = 4 - N, W, Z, Q, R (b)-185 - Z, Q, R (c)√ 20 - I, R (d) -⅞ - Q

98
Example 1 Name the sets of numbers to which each apply. (a)√ 16 = 4 - N, W, Z, Q, R (b)-185 - Z, Q, R (c)√ 20 - I, R (d) -⅞ - Q, R

99
Example 1 Name the sets of numbers to which each apply. (a)√ 16 = 4 - N, W, Z, Q, R (b)-185 - Z, Q, R (c)√ 20 - I, R (d) -⅞ - Q, R __ (e) 0.45

100
Example 1 Name the sets of numbers to which each apply. (a)√ 16 = 4 - N, W, Z, Q, R (b)-185 - Z, Q, R (c)√ 20 - I, R (d) -⅞ - Q, R __ (e) 0.45 - Q

101
Example 1 Name the sets of numbers to which each apply. (a)√ 16 = 4 - N, W, Z, Q, R (b)-185 - Z, Q, R (c)√ 20 - I, R (d) -⅞ - Q, R __ (e) 0.45 - Q, R

102
Properties of Real Numbers PropertyAdditionMultiplication Commutativea + b = b + aa·b = b·a Associative (a+b)+c = a+(b+c) (a · b) · c = a · (b · c) Identitya+0 = a = 0+aa·1 = a = 1·a Inversea+(-a) =0= -a+aa·1 =1= 1·a a a Distributivea(b+c)=ab+ac and (b+c)a=ba+ca

103
Example 2

104
Name the property used in each equation.

105
Example 2 Name the property used in each equation. (a) (5 + 7) + 8 = 8 + (5 + 7)

106
Example 2 Name the property used in each equation. (a) (5 + 7) + 8 = 8 + (5 + 7) Commutative Addition

107
Example 2 Name the property used in each equation. (a) (5 + 7) + 8 = 8 + (5 + 7) Commutative Addition (b) 3(4x) = (3·4)x

108
Example 2 Name the property used in each equation. (a) (5 + 7) + 8 = 8 + (5 + 7) Commutative Addition (b) 3(4x) = (3·4)x Associative Multiplication

109
Example 3 What is the additive and multiplicative inverse for -1¾?

110
Example 3 What is the additive and multiplicative inverse for -1¾? Additive: -1¾

111
Example 3 What is the additive and multiplicative inverse for -1¾? Additive: -1¾ + = 0

112
Example 3 What is the additive and multiplicative inverse for -1¾? Additive: -1¾ + 1¾ = 0

113
Example 3 What is the additive and multiplicative inverse for -1¾? Additive: -1¾ + 1¾ = 0 Multiplicative: -1¾

114
Example 3 What is the additive and multiplicative inverse for -1¾? Additive: -1¾ + 1¾ = 0 Multiplicative: -1¾ · = 1

115
Example 3 What is the additive and multiplicative inverse for -1¾? Additive: -1¾ + 1¾ = 0 Multiplicative: (-1¾)(- 4 / 7 ) = 1

116
Example 4

117
Simplify 2(5m+n)+3(2m–4n).

118
Example 4 Simplify 2(5m+n)+3(2m–4n). 2 (5m+n) + 3 (2m–4n)

119
Example 4 Simplify 2(5m+n)+3(2m–4n). 2 (5m+n) + 3 (2m–4n)

120
Example 4 Simplify 2(5m+n)+3(2m–4n). 2 (5m+n) + 3 (2m–4n) 2(5m)

121
Example 4 Simplify 2(5m+n)+3(2m–4n). 2 (5m+n) + 3 (2m–4n) 2(5m)+

122
Example 4 Simplify 2(5m+n)+3(2m–4n). 2 (5m+n) + 3 (2m–4n) 2(5m)+

123
Example 4 Simplify 2(5m+n)+3(2m–4n). 2 (5m+n) + 3 (2m–4n) 2(5m)+2(n)

124
Example 4 Simplify 2(5m+n)+3(2m–4n). 2 (5m+n) + 3 (2m–4n) 2(5m)+2(n)+

125
Example 4 Simplify 2(5m+n)+3(2m–4n). 2 (5m+n) + 3 (2m–4n) 2(5m)+2(n)+

126
Example 4 Simplify 2(5m+n)+3(2m–4n). 2 (5m+n) + 3 (2m–4n) 2(5m)+2(n)+3(2m)

127
Example 4 Simplify 2(5m+n)+3(2m–4n). 2 (5m+n) + 3 (2m–4n) 2(5m)+2(n)+3(2m)-

128
Example 4 Simplify 2(5m+n)+3(2m–4n). 2 (5m+n) + 3 (2m–4n) 2(5m)+2(n)+3(2m)-

129
Example 4 Simplify 2(5m+n)+3(2m–4n). 2 (5m+n) + 3 (2m–4n) 2(5m)+2(n)+3(2m)-3(4n)

130
Example 4 Simplify 2(5m+n)+3(2m–4n). 2 (5m+n) + 3 (2m–4n) 2(5m)+2(n)+3(2m)-3(4n) 10m

131
Example 4 Simplify 2(5m+n)+3(2m–4n). 2 (5m+n) + 3 (2m–4n) 2(5m)+2(n)+3(2m)-3(4n) 10m +

132
Example 4 Simplify 2(5m+n)+3(2m–4n). 2 (5m+n) + 3 (2m–4n) 2(5m)+2(n)+3(2m)-3(4n) 10m + 2n

133
Example 4 Simplify 2(5m+n)+3(2m–4n). 2 (5m+n) + 3 (2m–4n) 2(5m)+2(n)+3(2m)-3(4n) 10m + 2n +

134
Example 4 Simplify 2(5m+n)+3(2m–4n). 2 (5m+n) + 3 (2m–4n) 2(5m)+2(n)+3(2m)-3(4n) 10m + 2n + 6m

135
Example 4 Simplify 2(5m+n)+3(2m–4n). 2 (5m+n) + 3 (2m–4n) 2(5m)+2(n)+3(2m)-3(4n) 10m + 2n + 6m –

136
Example 4 Simplify 2(5m+n)+3(2m–4n). 2 (5m+n) + 3 (2m–4n) 2(5m)+2(n)+3(2m)-3(4n) 10m + 2n + 6m – 12n

137
Example 4 Simplify 2(5m+n)+3(2m–4n). 2 (5m+n) + 3 (2m–4n) 2(5m)+2(n)+3(2m)-3(4n) 10m + 2n + 6m – 12n

138
Example 4 Simplify 2(5m+n)+3(2m–4n). 2 (5m+n) + 3 (2m–4n) 2(5m)+2(n)+3(2m)-3(4n) 10m + 2n + 6m – 12n

139
Example 4 Simplify 2(5m+n)+3(2m–4n). 2 (5m+n) + 3 (2m–4n) 2(5m)+2(n)+3(2m)-3(4n) 10m + 2n + 6m – 12n 10m + 6m + 2n – 12n

140
Example 4 Simplify 2(5m+n)+3(2m–4n). 2 (5m+n) + 3 (2m–4n) 2(5m)+2(n)+3(2m)-3(4n) 10m + 2n + 6m – 12n 10m + 6m + 2n – 12n 16m

141
Example 4 Simplify 2(5m+n)+3(2m–4n). 2 (5m+n) + 3 (2m–4n) 2(5m)+2(n)+3(2m)-3(4n) 10m + 2n + 6m – 12n 10m + 6m + 2n – 12n 16m – 10n

Similar presentations

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google