Presentation is loading. Please wait.

1.2 – Order of Operations. Order of Operations 1.2 – Order of Operations.

Presentation on theme: "1.2 – Order of Operations. Order of Operations 1.2 – Order of Operations."— Presentation transcript:

1.2 – Order of Operations

Order of Operations 1.2 – Order of Operations

Order of Operations Parentheses 1.2 – Order of Operations

Order of Operations Parentheses Exponents 1.2 – Order of Operations

Order of Operations Parentheses Exponents Multiplication 1.2 – Order of Operations

Order of Operations Parentheses Exponents Multiplication Division 1.2 – Order of Operations

Order of Operations Parentheses Exponents Multiplication Division Addition 1.2 – Order of Operations

Order of Operations Parentheses Exponents Multiplication Division Addition Subtraction 1.2 – Order of Operations

Order of Operations ParenthesesPlease Exponents Multiplication Division Addition Subtraction 1.2 – Order of Operations

Order of Operations ParenthesesPlease ExponentsExcuse Multiplication Division Addition Subtraction 1.2 – Order of Operations

Order of Operations ParenthesesPlease ExponentsExcuse MultiplicationMy Division Addition Subtraction 1.2 – Order of Operations

Order of Operations ParenthesesPlease ExponentsExcuse MultiplicationMy DivisionDear Addition Subtraction 1.2 – Order of Operations

Order of Operations ParenthesesPlease ExponentsExcuse MultiplicationMy DivisionDear AdditionAunt Subtraction 1.2 – Order of Operations

Order of Operations ParenthesesPlease ExponentsExcuse MultiplicationMy DivisionDear AdditionAunt SubtractionSally 1.2 – Order of Operations

Example 1

Find the value of [2(10 - 4) 2 + 3] ÷ 5.

Example 1 Find the value of [2(10 - 4) 2 + 3] ÷ 5. [2(10 - 4) 2 + 3] ÷ 5 =

Example 1 Find the value of [2(10 - 4) 2 + 3] ÷ 5. [2(10 - 4) 2 + 3] ÷ 5 = [2(6) 2 + 3] ÷ 5

Example 1 Find the value of [2(10 - 4) 2 + 3] ÷ 5. [2(10 - 4) 2 + 3] ÷ 5 = [2(6) 2 + 3] ÷ 5 [2(36) + 3] ÷ 5

Example 1 Find the value of [2(10 - 4) 2 + 3] ÷ 5. [2(10 - 4) 2 + 3] ÷ 5 = [2(6) 2 + 3] ÷ 5 [2(36) + 3] ÷ 5 [72 + 3] ÷ 5

Example 1 Find the value of [2(10 - 4) 2 + 3] ÷ 5. [2(10 - 4) 2 + 3] ÷ 5 = [2(6) 2 + 3] ÷ 5 [2(36) + 3] ÷ 5 [72 + 3] ÷ 5 75 ÷ 5

Example 1 Find the value of [2(10 - 4) 2 + 3] ÷ 5. [2(10 - 4) 2 + 3] ÷ 5 = [2(6) 2 + 3] ÷ 5 [2(36) + 3] ÷ 5 [72 + 3] ÷ 5 75 ÷ 5 15

Example 2

Evaluate x 2 – y(x + y) if x = 8 and y = 1.5.

Example 2 Evaluate x 2 – y(x + y) if x = 8 and y = 1.5. x 2 – y(x + y) =

Example 2 Evaluate x 2 – y(x + y) if x = 8 and y = 1.5. x 2 – y(x + y) = 8 2 – 1.5(8 + 1.5)

Example 2 Evaluate x 2 – y(x + y) if x = 8 and y = 1.5. x 2 – y(x + y) = 8 2 – 1.5(8 + 1.5) 8 2 – 1.5(8 + 1.5)

Example 2 Evaluate x 2 – y(x + y) if x = 8 and y = 1.5. x 2 – y(x + y) = 8 2 – 1.5(8 + 1.5) 8 2 – 1.5(8 + 1.5) 8 2 – 1.5(9.5)

Example 2 Evaluate x 2 – y(x + y) if x = 8 and y = 1.5. x 2 – y(x + y) = 8 2 – 1.5(8 + 1.5) 8 2 – 1.5(8 + 1.5) 8 2 – 1.5(9.5) 64 – 1.5(9.5)

Example 2 Evaluate x 2 – y(x + y) if x = 8 and y = 1.5. x 2 – y(x + y) = 8 2 – 1.5(8 + 1.5) 8 2 – 1.5(8 + 1.5) 8 2 – 1.5(9.5) 64 – 1.5(9.5) 64 – 14.25

Example 2 Evaluate x 2 – y(x + y) if x = 8 and y = 1.5. x 2 – y(x + y) = 8 2 – 1.5(8 + 1.5) 8 2 – 1.5(8 + 1.5) 8 2 – 1.5(9.5) 64 – 1.5(9.5) 64 – 14.25 49.75

Example 3

Evaluate a 3 + 2bc if a = 2, b = -4, and c = -3. c 2 – 5

Example 3 Evaluate a 3 + 2bc if a = 2, b = -4, and c = -3. c 2 – 5 a 3 + 2bc = c 2 – 5

Example 3 Evaluate a 3 + 2bc if a = 2, b = -4, and c = -3. c 2 – 5 a 3 + 2bc = 2 3 + 2(-4)(-3) c 2 – 5

Example 3 Evaluate a 3 + 2bc if a = 2, b = -4, and c = -3. c 2 – 5 a 3 + 2bc = 2 3 + 2(-4)(-3) c 2 – 5 (-3) 2 – 5

Example 3 Evaluate a 3 + 2bc if a = 2, b = -4, and c = -3. c 2 – 5 a 3 + 2bc = 2 3 + 2(-4)(-3) c 2 – 5 (-3) 2 – 5 = 8 + 2(-4)(-3)

Example 3 Evaluate a 3 + 2bc if a = 2, b = -4, and c = -3. c 2 – 5 a 3 + 2bc = 2 3 + 2(-4)(-3) c 2 – 5 (-3) 2 – 5 = 8 + 2(-4)(-3) 9 – 5

Example 3 Evaluate a 3 + 2bc if a = 2, b = -4, and c = -3. c 2 – 5 a 3 + 2bc = 2 3 + 2(-4)(-3) c 2 – 5 (-3) 2 – 5 = 8 + 2(-4)(-3) 9 – 5 = 8 + 24 9 – 5

Example 3 Evaluate a 3 + 2bc if a = 2, b = -4, and c = -3. c 2 – 5 a 3 + 2bc = 2 3 + 2(-4)(-3) c 2 – 5 (-3) 2 – 5 = 8 + 2(-4)(-3) 9 – 5 = 8 + 24 9 – 5 = 32 4

Example 3 Evaluate a 3 + 2bc if a = 2, b = -4, and c = -3. c 2 – 5 a 3 + 2bc = 2 3 + 2(-4)(-3) c 2 – 5 (-3) 2 – 5 = 8 + 2(-4)(-3) 9 – 5 = 8 + 24 9 – 5 = 32 = 8 4

Example 4

Find the area of the following trapezoid. 16 in. 10 in. 52 in.

Example 4 Find the area of the following trapezoid. 16 in. A = ½h(b 1 + b 2 ) 10 in. 52 in.

Example 4 Find the area of the following trapezoid. 16 in. A = ½h(b 1 + b 2 ) 10 in. 52 in. A = ½h(b 1 + b 2 )

Example 4 Find the area of the following trapezoid. 16 in. A = ½h(b 1 + b 2 ) 10 in. = h 52 in. A = ½h(b 1 + b 2 )

Example 4 Find the area of the following trapezoid. 16 in. = b 1 A = ½h(b 1 + b 2 ) 10 in. = h 52 in. A = ½h(b 1 + b 2 )

Example 4 Find the area of the following trapezoid. 16 in. = b 1 A = ½h(b 1 + b 2 ) 10 in. = h 52 in. = b 2 A = ½h(b 1 + b 2 )

Example 4 Find the area of the following trapezoid. 16 in. A = ½h(b 1 + b 2 ) 10 in. 52 in. A = ½h(b 1 + b 2 ) = ½10(16 + 52)

Example 4 Find the area of the following trapezoid. 16 in. A = ½h(b 1 + b 2 ) 10 in. 52 in. A = ½h(b 1 + b 2 ) = ½10(16 + 52) = ½10(68)

Example 4 Find the area of the following trapezoid. 16 in. A = ½h(b 1 + b 2 ) 10 in. 52 in. A = ½h(b 1 + b 2 ) = ½10(16 + 52) = ½10(68) = 5(68)

Example 4 Find the area of the following trapezoid. 16 in. A = ½h(b 1 + b2) 10 in. 52 in. A = ½h(b 1 + b 2 ) = ½10(16 + 52) = ½10(68) = 5(68) = 340

Download ppt "1.2 – Order of Operations. Order of Operations 1.2 – Order of Operations."

Similar presentations

Ads by Google