Presentation is loading. Please wait.

Presentation is loading. Please wait.

18 Septembert 2007V.Kekelidze, V-high mult. conf1  Introduction  Experimental tasks  Basic Principles  Simulation  General view of MPD & the magnet.

Similar presentations


Presentation on theme: "18 Septembert 2007V.Kekelidze, V-high mult. conf1  Introduction  Experimental tasks  Basic Principles  Simulation  General view of MPD & the magnet."— Presentation transcript:

1 18 Septembert 2007V.Kekelidze, V-high mult. conf1  Introduction  Experimental tasks  Basic Principles  Simulation  General view of MPD & the magnet  Major Sub-Detectors: Inner Tracker Tracker RPC (TOF) ZDC  Summary MultiPurpose Detector NICA for NICA

2 18 Septembert 2007V.Kekelidze, V-high mult. conf2 Introduction  NICA / MPD project has started to study of hot & dense strongly interacting QCD matter & search for possible manifestation of the mixed phase formation & critical endpoint in heavy ion collisions /proposed by A.N.Sisakian and A.S.Sorin /  NICA / MPD is a leading LHE project in both – research program & development of basic facility in  it is expected that this flagship project provides: - the frontier researches in heavy ion physics - attraction of young physicists & worldwide cooperation - development of new technologies (incl. nanotechnologies) - essential extra funds

3 18 Septembert 2007V.Kekelidze, V-high mult. conf3  The new JINR facility based on the upgraded Nuclotron – heavy Ion collider with max energy  S NN = 9 GeV & mean luminosity of L=10 27 cm -2 s -1 (for U+U collision)  These investigations are relevant to understanding of the evolution of the Early Universe and formation of the neutron stars and the physics of heavy ion collisions.  It will allow to study in-medium properties of hadrons and nuclear matter equation of state including a search for possible manifestation of deconfiment and/or chiral symmetry restoration phase transition & QCD critical end-point in the energy region of  S NN = 3-9 GeV

4 18 Septembert 2007V.Kekelidze, V-high mult. conf4 NICA complex allocation MPD

5 18 Septembert 2007V.Kekelidze, V-high mult. conf5  Event-to event fluctuation in hadron productions (multiplicity, Pt etc.)  HBT correlations indicating the space-time size of the systems involving π, K, p, Λ (possible changes close to the de-confiment point)  Directed & elliptic flows for various hadrons  Multi-strange hyperon production: yield & spectra (the probes of nuclear media phases) The first stage of experimental tasks foresees to study the following effects (on energy & centrality scanning):

6 18 Septembert 2007V.Kekelidze, V-high mult. conf6 Possible indication on phase transition measurements of related yields for charged kaons & pions Some enhancement is indicated in the energy region around ~ Е лаб = 30 А ГэВ

7 18 Septembert 2007V.Kekelidze, V-high mult. conf7  Technical solutions should be as simple as possible  Detailed simulation of expected parameters & corresponding cross-checks by available data  The experiment should fulfill the major requirement: physical observables must be clearly distinguished from possible apparatus effects Basic principles of experimental approach

8 18 Septembert 2007V.Kekelidze, V-high mult. conf8 Basic principles of organization to approach  At first approximation - all sub-detectors could be designed & constructed at JINR based on the existing expertise & infrastructure  Major sub-detectors (tracker) have alternative design in order to provide possibility for collaborators to substitute/accomplish corresponding groups in future  The first realistic draft should be ready by January 2008  The rough cost estimation should be done by that time as well

9 18 Septembert 2007V.Kekelidze, V-high mult. conf9 First stage of simulation (based on UrQMD & GEANT4 in the framework of MPD-Root shell)  Au+Au collisions with total energy of GeV/n  Central interaction within b: 0 – 3 fm  Minimum bias within b: 0 – 15.8 fm  Collision rate at at L=10 27 cm -2 s -1 : ~ 6 kHz

10 18 Septembert 2007V.Kekelidze, V-high mult. conf10 Collision region

11 18 Septembert 2007V.Kekelidze, V-high mult. conf11 Charged particle multiplicity central collision |η| 100 MeV/c ~ 450

12 18 Septembert 2007V.Kekelidze, V-high mult. conf12 Momentum spectrum all B=0 = 0.4 GeV/c

13 18 Septembert 2007V.Kekelidze, V-high mult. conf13 momentum spectra for various particles π+π+ π-π- K+K+ K-K GeV/c

14 18 Septembert 2007V.Kekelidze, V-high mult. conf14 MPD General View

15 18 Septembert 2007V.Kekelidze, V-high mult. conf15 Basic geometry (dimensions) preliminary Defined as a compromise between: -TOF requirement -tracker resolution -magnetic field formation limited by collider optics

16 18 Septembert 2007V.Kekelidze, V-high mult. conf16 Magnet  superconducting solenoidal magnet  magnetic field 0.5 T  cryostat inner diameter (available for the detector) ~ 1.5 m  colour step 0.5 Gauss (~1 pm) - good homogeneity

17 18 Septembert 2007V.Kekelidze, V-high mult. conf17  Inner Tracker (IT) - silicon strip detector  Barrel Tracker (BT) - Straw or TPC pseudo-rapidity region from -1 to 1  End Cap Tracker (ECT) – Straw Chambers (to define reaction plane)  Resistive Plate Chamber (RPC) (to measure Time of Flight)  Electromagnetic Calorimeter (ECAL)  Zero Degree Calorimeter (ZDC) (for centrality definition)  Beam-Beam Counters (BBC) (to define centrality & interaction point) MPD major sub-detectors

18 18 Septembert 2007V.Kekelidze, V-high mult. conf18 Inner Tracker  Complementary detector for track precise reconstruction in the region close to the interaction piont  Cylindrical geometry (4 layers) covering the interaction region ~ 50 cm along the beam axis  Possible contribution to the dE/dx measurement for charged particles

19 18 Septembert 2007V.Kekelidze, V-high mult. conf19 Longitudinal view of MPD SVT Detector module Carbon ladder Collider chamber Beams

20 18 Septembert 2007V.Kekelidze, V-high mult. conf20 Transverse view of MPD SVT Number of modules 357. Number of detectors 714. Number of electronic channels cm

21 18 Septembert 2007V.Kekelidze, V-high mult. conf21 Barrel & End Cap Trackers Straw detector (optional) BT  major detector for charged particle track reconstruction and momentum measurement (P T component)  to measure z-coordinate of the hit with acceptable occupancy -crossing straw geometry is implemented (hyperbolic shape as the whole) - each straw is segmented by 18 parts ECT  the wheels with radial straws to define the production plane

22 18 Septembert 2007V.Kekelidze, V-high mult. conf22 Straw Tracker preliminary

23 18 Septembert 2007V.Kekelidze, V-high mult. conf23 Barrel Straw Tracker

24 18 Septembert 2007V.Kekelidze, V-high mult. conf24 EC Straw Tracker

25 18 Septembert 2007V.Kekelidze, V-high mult. conf25 Occupancy in the straw segments at various radiuses R = 30 cmR = 115 cm

26 18 Septembert 2007V.Kekelidze, V-high mult. conf26 TPC option for the Tracker

27 18 Septembert 2007V.Kekelidze, V-high mult. conf27 Time of Flight  t he major detector for particle identification  separation should be provided for pion / kaon in the momentum range 0-1,5 GeV/c for proton / kaon in the momentum range 0-2,5 GeV/c  2 stations of scintillation counters situated symmetrically from the interaction region near the beam pipe give the start signal  RPC detectors on the radius 1,3 m provides the TOF measurement  in addition RPS provides targeting for track reconstruction in BT

28 18 Septembert 2007V.Kekelidze, V-high mult. conf28 Proposed parameters  Radius from the beam line - 1,3 m  Time resolution -100 ps  Max momentum of π/K system separated better than 2,5 σ at 1,3GeV/c  Efficiency (acceptance) for π/K – better than 97%

29 18 Septembert 2007V.Kekelidze, V-high mult. conf29 Configuration  the RPC TOF system looks like barrel with the length 4 m and radius of 1,3 m.  the barrel surface is about 33 m2  the dimensions of one RPC counter is 7 cm x 100 cm it has 150 pads with size 2,3cm x 2 cm.  the full barrel is covered by 160 counters  the total number of readout channels is 24000

30 18 Septembert 2007V.Kekelidze, V-high mult. conf30

31 18 Septembert 2007V.Kekelidze, V-high mult. conf31

32 18 Septembert 2007V.Kekelidze, V-high mult. conf32

33 18 Septembert 2007V.Kekelidze, V-high mult. conf33

34 18 Septembert 2007V.Kekelidze, V-high mult. conf34 Gas gap = 0.23 mm Readout strip thickness = 0.5 mm Total active area width = 11.2 cm Honeycomb width = 12 cm Inner glass width = 11.2 cm Outer glass width = 11.5 cm PCB width = 13 cm Outer glass = 1.1 mm Inner glass = 0.55 mm carbon tape = 0.9 mm Mylar thickness = 0.25 mm PCB thickness = 1.5 mm Honeycomb thickness = 9.5 mm Strip width = 3 cm Strip interval = 0.3 cm PCB length = 52.8 cm Strip length = 47 cm Inner glass length = 47 cm Honeycomb = 48 cm Outer glass length = 47.4 cm TOF RPC design

35 18 Septembert 2007V.Kekelidze, V-high mult. conf35

36 18 Septembert 2007V.Kekelidze, V-high mult. conf36 Separation for Central events

37 18 Septembert 2007V.Kekelidze, V-high mult. conf37 Separation for Central events π+π+ K+K+ p

38 18 Septembert 2007V.Kekelidze, V-high mult. conf38 Electromagnetic Calorimeter  absorber / scintillator sandwich with MAPD readout In progress

39 18 Septembert 2007V.Kekelidze, V-high mult. conf39 Zero Degree Calorimeter  measurement of centrality: b~ A - Nspect selection of centrality at trigger level  measurement of event-by-event fluctuations to exclude the fluctuation of participants  monitor of beam intensity by detecting the neutrons from electromagnetic dissociation  ε e / ε h = 1 - compensated calorimeter  Lead / Scintillator sandwich

40 18 Septembert 2007V.Kekelidze, V-high mult. conf40 Schematic view of ZDC configuration Very peripheral collision Detection of neutrons. (4 modules) Beam hole Full beam intensity. Minimum 16 modules. spectator spots at Z=3 m E au =4.5 AGeV X Z Optional

41 18 Septembert 2007V.Kekelidze, V-high mult. conf41  The works on MPD design have been started high activity of many experts  New ideas & suggestions are under consideration still  Full simulation and event reconstruction works are in progress  The configurations for TPC & Ecal will be proposed soon  The major milestones are fixed the Letter of Intend to be ready by January 2008 Summary

42 18 Septembert 2007V.Kekelidze, V-high mult. conf42 Thanks to the working group NICA center group: Afanasiev S.V. Nikitin V.A. Borisov V.V. Peshekhonov V.D. Pavlyuk A.V. Golovatyuk V.M. Kurepin A.B. + volunteers Shabunov A.V. Potrebenikov YU.K. Zanevskij Yu.V. Kiryushin Yu.T. Murin Yu.A. Tyapkin I.A. Arkhipkin D. Abramyan H. Avdejchikov V.V. …….…..

43 18 Septembert 2007V.Kekelidze, V-high mult. conf43 Spare

44 18 Septembert 2007V.Kekelidze, V-high mult. conf44 I этап: 2007 – 2008 гг. - Развитие Нуклотрона - подготовка Технического проекта NICA - начало испытаний прoтотипов элементов MPD и NICA II этап: 2008 – 2012 гг. - Разработка и создание Бустера нуклотрона - Разработка и создание коллайдера NICA и установки MPD III этап: 2010 – 2013 гг. - монтаж коллайдера и установки MPD IV этап: 2013 г. - наладка и запуск Key experiments to understand the fundamental nature of matter Основные этапы и организация работ Основные этапы:

45 18 Septembert 2007V.Kekelidze, V-high mult. conf45 Требуется показать реализуемость проекта, для чего необходимо:  Определить и апробировать составляющие субпроекты; наметить график подготовки полномасштабного технического проекта (TDR)  Определить основных исполнителей и начать формирование Международной Коллаборации для его реализации  Уточнить временную шкалу реализации проекта и его стоимость; возможные источники финансирования Key experiments to understand the fundamental nature of matter Срочные работы первого этапа:

46 18 Septembert 2007V.Kekelidze, V-high mult. conf46 Организован в 2006: А.Н.Сисакян А.С.Сорин В.Д.Тонеев А.Д.Коваленко И.Н.Мешков А.И.Малахов С.В.Афанасьев В.А.Никитин Проводятся регулярные совещания; проведен ряд расширенных совещаний (в т.ч. «Круглый стол» с привлечением внешних экспертов) Key experiments to understand the fundamental nature of matter Инициативный (координационный) комитет

47 18 Septembert 2007V.Kekelidze, V-high mult. conf47 5 Modules: 1-st, 3-th, 5-th – φ (2; 2; 4 layers); 2-d, 4-th - ± 7 o ( 3; 3 layers) L -2,4 m; R - from 20 cm to 120 cm 4 mm in diameter straws – ; Tracker (Barrel Straw Tracker) preliminary

48 18 Septembert 2007V.Kekelidze, V-high mult. conf48 4 mm in diameter segmented straws, L -2,4 m: – pc 20 cm 40 cm 60 cm Segmentation of 1-st and 2-d modules: Segmentation of 3-th, 4-th and 5-th modules: 60 cm Total: channels Tracker (Barrel Straw Tracker) continuation


Download ppt "18 Septembert 2007V.Kekelidze, V-high mult. conf1  Introduction  Experimental tasks  Basic Principles  Simulation  General view of MPD & the magnet."

Similar presentations


Ads by Google