Download presentation

Presentation is loading. Please wait.

Published byJarvis Breedlove Modified about 1 year ago

1
2.0 ANALYSIS AND DESIGN 2.2 STRUCTURAL ELEMENT Reinforced Concrete Slabs Rearrangement by :- NOR AZAH BINTI AIZIZ KOLEJ MATRIKULASI TEKNIKAL KEDAH

2
INTRODUCTION Concrete slabs are similar to beams in the way they span horizontally between supports and may be simply supported, continuously supported or cantilevered. Unlike beams, slabs are relatively thin structural members which are normally used as floors and occasionally as roof systems in multi-storey buildings.

3
INTRODUCTION Slabs are constructed of reinforced concrete poured into formwork. The formwork defines the shape of the final slab when the concrete is cured (set). Concrete slabs are usually 150 to 300 mm deep.

4
INTRODUCTION Slabs transmit the applied floor or roof loads to their supports. Slabs may be classified into two main groups depending on whether they are supported on the ground or suspended in a building.

5
GROUND SLABS Ground slabs are those slabs that are poured directly into excavated trenches in the ground. They rely entirely on the existing ground for support. The ground must be strong enough to support the concrete slab. Normally, a minimum bearing capacity for slab sites is 50 kPa.

6
Diagram of slabs with arrow representing applied floor and roof load pointed down to the slab. The slab is supported by foundation and the slabs transmit its load to foundation. GROUND SLABS

7
SUSPENDED SLABS Suspended slabs are slabs that are not in direct contact with the ground. They form roofs or floors above ground level.

8
Suspended slabs are grouped into two types: i)One way slabs - which are supported on two sides i)two way slabs - which are supported on all four sides. The way a slab spans its supports has a direct impact on the way in which the slab will bend. SUSPENDED SLABS

9
ONE-WAY SLAB One way slabs are usually rectangular where the length is two or more times the width. These slabs are considered to be supported along the two long sides only even if there is a small amount of support on the narrow ends.

10
ONE-WAY SLAB A diagram of a concrete slab with two supporting sides is shown. The width of the slab is also the short span. Rule of Thumb: For l y /l x > 2, design as one-way slab l y = the length of the longer side l x =the length of the shorter side

11
ONE-WAY SLAB

12
It is assumed that; one way slabs bend only in the direction of the short span, so; the main steel reinforcement runs in this direction across the slab. ONE BEND SLAB

13
A diagram of a concrete slab with two supporting sides is shown. Compression on the slab pushes towards the middle of the slab which causes the slab to bend inwards. Tension is distributed across the supporting sides. ONE BEND SLAB

14
Two way slabs are approximately square where the length is less than double the width and the slab is supported equally on all four sides. TWO WAY SLAB Rule of Thumb: For ly/lx ≤ 2, design as two-way slab l y = the length of the longer side l x =the length of the shorter side

15
TWO WAY SLAB A diagram of a concrete slab with four supporting sides is shown. The pressure spans equally across the width and length of the concrete slab. Spans equally both direction

16
TWO WAY SLAB

17
These slabs are assumed to bend in both directions, so main steel reinforcement of equal size and spacing is run in both directions. TWO BEND SLAB

18
A diagram of the compression that occurs in a two bend slab is shown. The pressure runs to the middle of the slab which causes all four sides to bend equally. Compression TWO BEND SLAB

19
Figure shows three floor layouts of a monolithic beam and slab construction. a) State whether the floor panels are one-way or two-way spanning. b) Sketch the tributary areas for all the beams BA1 A 1 2 C 3050mm 7650mm 7050mm Example:

20
Answer : BA1 A 1 2 C 3050mm 7650mm 7050mm Panel A-A1/1-2 l y /l x =7050/3050 = 2.3 > 2 one-way slab Panel A-A1/1-2 l y /l x =7050/3050 = 2.3 > 2 one-way slab Panel B-C/1-2 l y /l x =7650/7050 = 1.1 < 2 two-way slab Panel B-C/1-2 l y /l x =7650/7050 = 1.1 < 2 two-way slab

21
EXAMPLE : BA1 A 1 2 C 3050mm 7650mm 7050mm The beams supporting the floor panel A-A1/1-2 are 350 mm deep and 150 mm thick, and the floor slab is 150 mm thick, given the density of concrete as 24 kN/m3. a)Calculate the self-weight of the beam A/1-2, considering only the rib of the beam in kN/m b)Calculate the self-weight of the slab in kN/m 2 c)Calculate ultimate load on beam A/1-2 in kN/m d)Calculate reaction force at column A/1

22
ANSWER : A/1 350 rib 150 7050 A/2 a)Self-weight of the rib in kN/m = 0.150 x (0.350-0.150) x 24 = 0.72kN/m b)Self-weight of the slab in kN/m 2 = 0.15 x 24 = 3.6kN/m 2 c)rib self-weight = 0.72kN/m slab self-weight = 0.5 x w x l x = 0.5 x 3.6 x 3.05 = 5.49kN/m Ultimate load on beam A/1-2 in kN/m = rib self-weight + slab self- weight = 1.4 x 0.72 + 1.4 x 5.49 = 1.008 + 7.686 = 8.694 kN/m d.Reaction force at column A/1 =8.694 x 7.05/2 =30.64kN

23
Design a one way slab supported on two brick wall spanning 3 m c-c. The characteristic dead load ( excluded self weight slab) and characteristic live load supports by the slab are 0.35 kN/m 2 and 2.5 kN/m 2. ( f cu =25 N/mm2, f y =250 N/mm 2, concrete cover=25 mm and assume diameter of main bars at 10 mm) One-way slab Design

24
Is designed as a shallow rectangular beam Consider a strip 1 m wide for design An upper limit to the value of the lever arm, z = 0.95 d The reinforcement area evaluated from; M ult = 0.87 A s f y z One-way slab Design

25
3000 mm 7500 mm Figure 2: Building layout plan B A1A1A 2 1 1a A

26
One-way slab Design F st F cc d b AsAs (d-0.9x/2) a F cc F st x 0.9x Concrete compression Steel tension Where: f cu - Characteristic of concrete strength (30N/mm2) f y - Characteristic of reinforcement strength (460N/mm2) A – area of beam cross section A S – area of reinforcement cross section M – Moment Equation F cc = 0.45f cu A F st = 0.95A s ∑M a = 0 F cc (d-0.9x/2) – M = 0 F cc = F st

27
Section A-A Characteristic Dead load,g k = slab self weight + weigh of services, finishing & ceiling = 24kN/m 3 x h + 0.35 kN/m 2 = 24 x0.125 + 0.35 = 3.35 kN/m 2 Live load, q k = 2.5kN/m 2 7500 h=125

28
Gk= 3.35 x 7500 = 25.125 kN/m 7500 Qk= 2.5 x 7500 = 18.75 kN/m Factored load on the slab = 1.4 x 25.125 + 1.6 x 18.75 = 65.175 kN/m

29
TABLE: Ultimate bending moment and shear force coefficients in one-way spanning

30
Refer Table: Ultimate bending moment and shear force coefficients in one-way spanning As a continues beam, it is not easy to find shear force and bending moment, so we use diagram given. Use middle interior span & interior support F= 65.175 kN/m x 3.00 m = 195.53 kN Use M = 0.063 FL =0.063x 195.53 x 3.00 =36.96 kNm

31
H=125 7500 F st F cc d= 125 - 25-10/2 = 95mm ∑Ma = 0 F cc =F st Fcc (d-0.9x/2) – M = 0 0.45 x fcu x A x (d-0.9x/2) – M = 0 0.45 x 25 x 0.9 x x 7500 x (95 - 0.9 x /2) – 36.96 x 10 6 = 0 75937.5 x (95-0.45 x ) - 36.96 x 10 6 = 0 7214062.5 x - 34171.875 x 2 - 36.96 x 10 6 = 0 x = 205.86 @ 5.25

32
F cc =F st F cc = 0.45 x 25 x 0.9(5.25 ) x 7500 = 398671.875 N 398671.875 = 0.95 x f y xAs Where f y =250 (mild steel) A s = 398671.875 / 237.5 = 1680 mm 2 Lets say for 35 rods; 2223/35 = 48 mm 2 (1 rod) So size rebar A = Πj 2 = ΠD 2 /4 = 48 mm 2 D = √ 48 x 4 / Π D = 8 mm for 1 bar Spacing = 7500 – 25 (2) / 34 = 219 mm So use 35 R10 - 219, (35 mild steel bar 10mm dia. with 219 spacing)

Similar presentations

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google