Download presentation

Presentation is loading. Please wait.

Published byLyndsey Smail Modified over 5 years ago

1
T6. DESIGN OF REINFORCED CONCRETE BEAM Reinforced concrete framed building T6. Design of reinforced concrete beam page 1. Alaprajz Floor plan Beam: linear member subjected to flexure and shear (N=0). Example: Bending design of slab L1 and beam G1.

2
I. Design of slab L1 I.1. Geometry, model, loads I.1.1. Model, Geometry: two-span continuous beam b= determine l eff page 2. I.1.2. Loads: floor Dead load -Self-weight: Floor layers: 2 cm glued ceramic 7 cm concrete topping 3 cm floating layer (EPS) + foil 3 cm polystyrene (installation zone) 18 cm monolithic reinforced concrete slab Σ T6. Design of reinforced concrete beam Reinforced concrete design aids using Eurocode (SR p.12.)

3
page 3... Design value of the total load of 1 m wide strip of the slab: Live load -Variable load: substituting load of light partition walls: I.I.3 Cross-sectional data width: b= thickness: h= concrete cover: main reinforcement: 12/110 (SR p.9.) distribution steel: effective depth: T6. Design of reinforced concrete beam In the span Above intermediate support

4
I. 2. Calculation of internal forces page 4. R.C. inhomogeneous, materials of the cross-section are isotropic and perfectly plastic at limit state Two-span continuous beam (SR. p.14) Loading schemes: Above intermediate support – total load in the span + first and last supports – partial load T6. Design of reinforced concrete beamT7. Design of reinforced concrete beam 2, shear

5
page 5. f yk Material properties: Concrete C25/30-24 f ck Reinforcing steelB500 (SR. p.7) (SR. p.8.) Limit state: Calculation of M Rd : compressed extreme fiber fails, and tension reinforcement yields for normally reinforced cross-section N s = f yd a s Ifreinforcement yields ( SR. p.8. table) Force equilibrium : Checking of yielding of steel: T6. Design of reinforced concrete beam

6
page 6. Moment equilibrium: about the center of gravity of compressive stresses: Constructional rules: (SR. p.49+ p.51) Minimum quantity of tensile reinforcement ‰ : Not the end of the example: Shear, Deformations, Design of reinforcement … next practical Distribution steel: at least 20% of the main reinforcement: T6. Design of reinforced concrete beam

7
II. Design of beam G1 Determination of the necessary steel quantity: As=? T6. Design of reinforced concrete beam page 7.

8
To be continued! T6. Design of reinforced concrete beam page 8.

Similar presentations

© 2020 SlidePlayer.com Inc.

All rights reserved.

To make this website work, we log user data and share it with processors. To use this website, you must agree to our Privacy Policy, including cookie policy.

Ads by Google