Presentation is loading. Please wait.

Presentation is loading. Please wait.

MOLECULAR DIFFERENCES RESULTING FROM LARVAL GROWTH CONDITIONS IN AEDES AEGYPTI DAVID PRICE DISEASE VECTOR MOLECULAR BIOLOGY LAB NMSU PI IMMO HANSEN.

Similar presentations


Presentation on theme: "MOLECULAR DIFFERENCES RESULTING FROM LARVAL GROWTH CONDITIONS IN AEDES AEGYPTI DAVID PRICE DISEASE VECTOR MOLECULAR BIOLOGY LAB NMSU PI IMMO HANSEN."— Presentation transcript:

1 MOLECULAR DIFFERENCES RESULTING FROM LARVAL GROWTH CONDITIONS IN AEDES AEGYPTI DAVID PRICE DISEASE VECTOR MOLECULAR BIOLOGY LAB NMSU PI IMMO HANSEN

2 Background  Aedes aegypti is an important disease vector  Relatively safe model for malaria Plasmodium gallinaceum  Existing Reference Genome

3 Aedes/Dengue Situation http://www.healthmap.org/dengue/index.php

4 Small vs Large Mosquitoes  Larval conditions affect adult insect  Crowding, food availability -> Changes in adult size, time to reach adulthood, immunity, reproductive success, energy stores, life span, fecundity on first blood meal, vectorial capacity

5 Fat Body

6 Bloodfeeding  Purdue Medical Entomology PBM- Post Blood Meal NBF- Not Blood Fed

7 Hypothesis  Significant metabolomic, transcriptional and metabolic differences exist in the fat body between small and large mosquitoes, before and after blood meal.

8 Methods  Metabolic CO 2 production  Metabolomic GC/MS, LC/MS, LC/MS/MS analysis  Transcriptomic RNA-Seq approach using Illumina sequencing

9 Metabolomics  Questions:  Map metabolic pathway up/down regulation after blood meal Price et al, unpublished data

10 Metabolic  Questions:  Do small and large mosquitoes burn energy at the same rate?  Are the substrates being used for energy the same?  In conjunction with other work: Is there a difference in how far energy stores go?

11 Metabolic Price et al, unpublished data, Sable Systems

12 Transcriptomic  Questions:  Determine changes in gene expression between mosquitoes raised under different nutrient conditions  What patterns of expression are present?

13

14

15 Conclusions  Used metabolomic, metabolic, and transcriptional descriptive work to identify differences between small and large mosquitoes; pre and post bloodmeal.  Immune regulation is curious  Results of small vs large vectorial capacity experiments have been conflicting  Signs of autophagy  No apparent metabolic difference

16 Hansen Lab/Collaborators  Alexander Ulanov – University of Chicago, Urbana  Wayne Van Voorhies - NMSU molecular Biology  NIAID/NIH

17 Bloodfeeding  Pre and Post Bloodmeal  Bloodfeeding is required for egg production in Ae. Aegypti.  During blood feeding, body weight more than doubles in a minute.  Three day process, bloodmeal to eggs (Ave. 55)  Steinwascher, American Midland Naturalist. Vol 112 No 1.  Metabolic peak at 24 hours  Gray and Bradley, Parasitology. Feb 2006.

18 Fat Body Physiology  Function similar to a liver and fat tissue  Most metabolic pathways  Energy - Fat and Glycogen stores  Nutrient stores  Synthesizes and supplies yolk proteins for vitellogenesis to the ovaries

19 Metabolic  Experiment in planning  Larger groups of mosquitoes over course of 4 or 5 days to determine RQ  RQ is ratio of CO 2 produced to O 2 consumed 1 Carbohydrate 0.9 Protein 0.7 Lipid

20 Vector Control Methods Using Mosquitoes  Sterile insect technique  Release of sterile males to reduce population numbers and interrupt disease transmission  Population replacement  Upregulation of immune system components typically leads to increased fitness cost  Increased fitness cost in the wild could lead to less fit mosquito  Population reduction  Change the average size of a mosquito and what will happen to a wild population

21 Future  Sequence Small and Large mosquito transcriptomes, pre and post bloodmeal  Connect transcriptional data to metabolomic Enzymes to metabolites – KEGG  Identify differences which may be important for nutrient accumulation and explore use in vector control  Infection response  Dengue, plasmodium

22

23 unfed 24 h PBM 48 h PBM PBM- Post Blood Meal NBF- Not Blood Fed


Download ppt "MOLECULAR DIFFERENCES RESULTING FROM LARVAL GROWTH CONDITIONS IN AEDES AEGYPTI DAVID PRICE DISEASE VECTOR MOLECULAR BIOLOGY LAB NMSU PI IMMO HANSEN."

Similar presentations


Ads by Google