Presentation is loading. Please wait.

Presentation is loading. Please wait.

New Probes of Substellar Evolution from Infrared Parallax Program(s) New Probes of Substellar Evolution from Infrared Parallax Program(s) Trent Dupuy Art.

Similar presentations


Presentation on theme: "New Probes of Substellar Evolution from Infrared Parallax Program(s) New Probes of Substellar Evolution from Infrared Parallax Program(s) Trent Dupuy Art."— Presentation transcript:

1 New Probes of Substellar Evolution from Infrared Parallax Program(s) New Probes of Substellar Evolution from Infrared Parallax Program(s) Trent Dupuy Art credit: R. Hurt (IPAC)

2 log(L bol /L  ) Mass (M  ) Hubble Symposium 2012Trent Dupuy (CfA/SAO) log(L bol /L  ) Saumon & Marley (2008) “hybrid” tracks

3 Dahn et al. (2002), Tinney et al. (2003), Vrba et al. (2004), etc. Main-sequence stars Brown dwarfs Colder = dustier Colder = more methane-rich Dust clouds disperse T L energy output = mass >M6 Hubble Symposium 2012Trent Dupuy (CfA/SAO) MJMJ

4 Dahn et al. (2002), Tinney et al. (2003), Vrba et al. (2004), etc. Main-sequence stars Brown dwarfs T L >M6 L/T transition late- T energy output = mass Hubble Symposium 2012Trent Dupuy (CfA/SAO) MJMJ

5 Dahn et al. (2002), Tinney et al. (2003), Vrba et al. (2004), etc. Main-sequence stars Brown dwarfs T L energy output = mass >M6 dynamical masses Hubble Symposium 2012Trent Dupuy (CfA/SAO) MJMJ

6 Dynamical Masses for Visual Binaries Kepler M tot a3a3 P2P2 = α3d3α3d3 Hubble Symposium 2012Trent Dupuy (CfA/SAO)

7 log(L bol /L  ) Mass (M  ) 10 Gyr 3 Gyr 1 Gyr 0.3 Gyr 0.1 Gyr T L >M6 ≈3% distance ≈10% mass ≈10% distance ≈30% mass starsbrown dwarfs “planetary mass” Hubble Symposium 2012Trent Dupuy (CfA/SAO) Baraffe et al. (2003) COND tracks

8 USNO optical PI: Dahn, Monet Previously published parallaxes for L and T dwarfs USNO IR PI: Vrba NTT/SOFI PI: Tinney Precision needed for ultracool binary masses Hubble Symposium 2012Trent Dupuy (CfA/SAO)

9 Hubble Symposium 2012Trent Dupuy (CfA/SAO) CFHT Parallax Program - queue scheduled - Mauna Kea seeing - 3.6-m aperture - WIRCam’s large FOV CFHT Parallax Program - queue scheduled - Mauna Kea seeing - 3.6-m aperture - WIRCam’s large FOV Credit: J.-C. Cuillandre (CFHT)

10 10’ WIRCam Observing Strategy Credit: J.-C. Cuillandre (CFHT) Hubble Symposium 2012Trent Dupuy (CfA/SAO)

11 10’ Credit: J.-C. Cuillandre (CFHT) use a single chip Hubble Symposium 2012Trent Dupuy (CfA/SAO) WIRCam Observing Strategy

12 Credit: J.-C. Cuillandre (CFHT) use a single chip get ≈20−30 dithered frames per epoch Hubble Symposium 2012Trent Dupuy (CfA/SAO) WIRCam Observing Strategy

13 use a single chip get ≈20−30 dithered frames per epoch J-band: always observe within ≈1 hr of transit (queue is ideal for this) - OR - narrow K-band for bright targets – no DCR differential chromatic refraction Δairmass < 0.03 Δairmass = 0.2 Hubble Symposium 2012Trent Dupuy (CfA/SAO) WIRCam Observing Strategy

14 1. pixel coordinates of sources 2. date/time (header) WIRCam Astrometric Analysis Credit: J.-C. Cuillandre (CFHT) run SExtractor on the detrended images (no stacking!) Hubble Symposium 2012Trent Dupuy (CfA/SAO)

15 run SExtractor on the detrended images (no stacking!) cross-match sources between dithers Credit: J.-C. Cuillandre (CFHT) Hubble Symposium 2012Trent Dupuy (CfA/SAO) WIRCam Astrometric Analysis

16 Apply custom distortion solution before solving for linear terms. (Also applied differential aberration and refraction offsets: 10 -4 change to scale.) run SExtractor on the detrended images (no stacking!) cross-match sources between dithers register dithers without using any catalog info Hubble Symposium 2012Trent Dupuy (CfA/SAO) WIRCam Astrometric Analysis

17 (i.e., ≈0.04 pixels) (i.e., ≈0.009 pixels) divide by sqrt(N dither ) run SExtractor on the detrended images (no stacking!) cross-match sources between dithers register dithers without using any catalog info compute median and rms of source positions Hubble Symposium 2012Trent Dupuy (CfA/SAO) WIRCam Astrometric Analysis

18 Markov Chain Monte Carlo parallax fitter orbit motion correction applied to binaries with known orbits absolute parallax correction derived from Besancon Galaxy model  2 good for all targets, except 3 new astrometric binaries! Parallax fits for 45 targets (79 objects) Hubble Symposium 2012Trent Dupuy (CfA/SAO)

19 CFHT parallaxes Hubble Symposium 2012Trent Dupuy (CfA/SAO) median: 1.3 mas (2.5%) best: 0.7 mas (1.0%)

20 Combine new parallaxes with loads of Keck LGS AO imaging (17 binaries) Hubble Symposium 2012Trent Dupuy (CfA/SAO)

21 And IRTF spectra… Perform “spectral decomposition” for all binaries with resolved near-IR photometry and int.-light spectrum. (33 binaries) Hubble Symposium 2012Trent Dupuy (CfA/SAO)

22 Dahn et al. (2002), Tinney et al. (2003), Vrba et al. (2004), etc. Main-sequence stars Brown dwarfs Hubble Symposium 2012Trent Dupuy (CfA/SAO) MJMJ

23 M6−L2 L2.5−L9 L9.5−T4 T4.5−T9 Hubble Symposium 2012Trent Dupuy (CfA/SAO) 1. “L/T gap”2. late-T dwarf diversity 3. J-band brightening (a.k.a. “bump”)

24 Trent Dupuy (CfA/SAO) The L/T “gap” Hubble Symposium 2012 Paucity of brown dwarfs at certain J-H and J-K colors, but not H-K. Implies that the last phase of cloud dispersal occurs rapidly.

25 Trent Dupuy (CfA/SAO) The L/T “gap” Hubble Symposium 2012

26 Trent Dupuy (CfA/SAO) The L/T “gap” Hubble Symposium 2012 Saumon & Marley (2008) gap pileup May also be tied to a theoretically predicted (but as yet unobserved) lag and speed-up in luminosity evolution…

27 M6−L2 L2.5−L9 L9.5−T4 T4.5−T9 Hubble Symposium 2012Trent Dupuy (CfA/SAO) 1. “L/T gap”2. late-T dwarf diversity

28 Hubble Symposium 2012Trent Dupuy (CfA/SAO) rms about the polynomial fit in mags “second” parameters like metallicity, gravity have bigger effect on T dwarfs than for earlier types…

29 M6−L2 L2.5−L9 L9.5−T4 T4.5−T9 Hubble Symposium 2012Trent Dupuy (CfA/SAO) 1. “L/T gap”2. late-T dwarf diversity 3. J-band brightening (a.k.a. “bump”)

30 J-band “bump” ≈0.7 mag H-band plateau ≈0.0 mag Y-band “bump” ≈0.9 mag Dust clearing has an even bigger effect at ≈1.0  m than at ≈1.2  m. Hubble Symposium 2012Trent Dupuy (CfA/SAO)

31 M6−L2 L2.5−L9 L9.5−T4 T4.5−T9 Hubble Symposium 2012Trent Dupuy (CfA/SAO)

32 Results Summary CFHT parallaxes (paper 1): – doubles sample of binaries, ≈ tripled L/T transition sample – median (best) precision of 1.3 mas (0.7 mas) or 2.5% (1.0%) – 3 binaries w/ astrometric perturbations (1 new discovery) – Lots of extra data: Keck LGS AO + archival HST, VLT imaging IRTF spectra (spectral decomposition analysis) New science with populous sample of ultracool dwarfs: – “L/T gap” observed for the first time – populous late-T sample reveals important 2 nd parameters – J-band (and now Y-band) “bump” Hubble Symposium 2012Trent Dupuy (CfA/SAO)

33 High-precision for faint targets Hubble Symposium 2012Trent Dupuy (CfA/SAO)

34 19952002 2008 2010 2011 750 K Gl 570D 700 K 124 K 550 K520 K350 K 2M0415 CFBDS 0059 UGPS 0722 CFBDSIR 1458B WD 0806-661B Brown Dwarf Discoveries at 300 K? Extremely cold companion discovered in our Keck LGS AO imaging

35 Warm Spitzer parallaxes of “room temperature” WISE Y-type dwarfs Cycle 8 DDT Program co-Is: A. Kraus, M. Liu

36 Hubble Symposium 2011 @ Caltech (a.k.a. Apple’s next iPhone ad) Hubble Symposium 2011 @ Caltech (a.k.a. Apple’s next iPhone ad) Thank You


Download ppt "New Probes of Substellar Evolution from Infrared Parallax Program(s) New Probes of Substellar Evolution from Infrared Parallax Program(s) Trent Dupuy Art."

Similar presentations


Ads by Google