Download presentation

Presentation is loading. Please wait.

Published byRolando Mynatt Modified over 2 years ago

1
Study of Position Sensitive E-E for Space Particle Telescope Pre-results of Geant4 simulation 张云龙，王文骁，李翠

2
Motivation Study of space science is in need of information of space particle(nuclide/ion). Important parameters: energy spectrum of particle and particle flux. First of all, identify particles. (Reconstruct Z and M in simulation.)

3
Particle identification Bethe-Bloch formula: Energy loss of incident particle could be described by Bethe-Bloch formula. Due to ionization, particle will deposit energy in detector, and detector can output signal. The value of output signal in detector relevant to the incident particle’s charge, kinetic energy and so on. With measured detector’s signal, the particle’s charge and mass could be identified.

4
Telescope model Elements’ thickness: First: 50 m Second: 192 m Third: 248 m BGO: 63mm 63mm 40mm BGO Silicon detector z x y 0.0 60 80 90

5
H1H2H3 /gps/source/clear /gps/source/add 1 /gps/particle proton /gps/pos/type Point /gps/pos/centre 0. 0. 9.1 cm /gps/ang/type iso /gps/ang/mintheta 0.00 deg /gps/ang/maxtheta 15.00 deg /gps/ene/type Lin /gps/ene/min 0. MeV /gps/ene/max 200. MeV /gps/ene/gradient 0. /gps/ene/intercept 1. /run/beamOn 20000 /gps/source/clear /gps/source/add 1 /gps/particle ion /gps/ion 1 3 1 0 /gps/pos/type Point /gps/pos/centre 0. 0. 9.1 cm /gps/ang/type iso /gps/ang/mintheta 0.00 deg /gps/ang/maxtheta 15.00 deg /gps/ene/type Lin /gps/ene/min 0. MeV /gps/ene/max 200. MeV /gps/ene/gradient 0. /gps/ene/intercept 1. /run/beamOn 20000 /gps/source/clear /gps/source/add 1 /gps/particle ion /gps/ion 1 2 1 0 /gps/pos/type Point /gps/pos/centre 0. 0. 9.1 cm /gps/ang/type iso /gps/ang/mintheta 0.00 deg /gps/ang/maxtheta 15.00 deg /gps/ene/type Lin /gps/ene/min 0. MeV /gps/ene/max 200. MeV /gps/ene/gradient 0. /gps/ene/intercept 1. /run/beamOn 20000

6
Energy deposit in each Si Layer and BGO H1

7
Energy deposit in each Si Layer and BGO H2

8
Energy deposit in each Si Layer and BGO H3

9
E VS Kinetic energy

10
He3He4 /gps/source/clear /gps/source/add 1 /gps/particle alpha #/gps/ion 2 4 2 0 /gps/pos/type Point /gps/pos/centre 0. 0. 9.1 cm /gps/ang/type iso /gps/ang/mintheta 0.00 deg /gps/ang/maxtheta 15.00 deg /gps/ene/type Lin /gps/ene/min 0. MeV /gps/ene/max 400. MeV /gps/ene/gradient 0. /gps/ene/intercept 1. /run/beamOn 20000 /gps/source/clear /gps/source/add 1 /gps/particle ion /gps/ion 2 3 2 0 /gps/pos/type Point /gps/pos/centre 0. 0. 9.1 cm /gps/ang/type iso /gps/ang/mintheta 0.00 deg /gps/ang/maxtheta 15.00 deg /gps/ene/type Lin /gps/ene/min 0. MeV /gps/ene/max 400. MeV /gps/ene/gradient 0. /gps/ene/intercept 1. /run/beamOn 20000

11
Energy deposit in each Si Layer and BGO He3

12
Energy deposit in each Si Layer and BGO He4

13
E VS Kinetic energy

14
Li6Li7 /gps/source/clear /gps/source/add 1 /gps/particle ion /gps/ion 3 6 3 0 /gps/pos/type Point /gps/pos/centre 0. 0. 9.1 cm /gps/ang/type iso /gps/ang/mintheta 0.00 deg /gps/ang/maxtheta 0.01 deg /gps/ene/type Lin /gps/ene/min 0. MeV /gps/ene/max 400. MeV /gps/ene/gradient 0. /gps/ene/intercept 1. /run/beamOn 10000 /gps/source/clear /gps/source/add 1 /gps/particle ion /gps/ion 3 7 3 0 /gps/pos/type Point /gps/pos/centre 0. 0. 9.1 cm /gps/ang/type iso /gps/ang/mintheta 0.00 deg /gps/ang/maxtheta 0.01 deg /gps/ene/type Lin /gps/ene/min 0. MeV /gps/ene/max 500. MeV /gps/ene/gradient 0. /gps/ene/intercept 1. /run/beamOn 10000

15
Energy deposit in each Si Layer and BGO Li6

16
Energy deposit in each Si Layer and BGO Li7

17
E VS Kinetic energy

18
Be7Be9Be10

19
B10B11

20
C12C13C14

21
Reconstruct Z NUCLEAR INSTRUMENTS AND METHODS 145(1977) 583-591 The final calculated particle identification value “PI”, approximately (AZ 2 ) 1/3

22
PI calculation T1: thickness of E detector E1: E E2: total energy

23
Reconstruct Z H1 H2H3 He3He4 Li6 Li7 Be B C

24
Reconstruct M Once the charge (Z) has been identified, the mass M of the specific isotope can be reconstructed by means of the equation: A precise evaluation of such parameters a and b for each atomic species has been obtained by a fit of the following expression: R: the measured range E: kinetic energy a: is a constant of the medium b: [1.5, 1.8] NUCLEAR INSTRUMENTS AND METHODS IN PHYSICS RESEARCH A 424(1999)414-424

25
Measured range VS Kinetic energy proton alpha Li Be

26
Measured range VS Kinetic energy BC

27
Values of a&b

28
mass H1H2 H3 He3 He4

29
mass Li6Li7 Be7Be9 Be10 B10 B11 C12C13 C14

Similar presentations

OK

Isotopic Abundance Pages 23-27. Thinking question Why are there decimal places for atomic masses on the periodic table if protons and neutrons have amu.

Isotopic Abundance Pages 23-27. Thinking question Why are there decimal places for atomic masses on the periodic table if protons and neutrons have amu.

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Ppt on solar power satellites Ppt on product specification software Ppt on music therapy Ppt on first conditional worksheets Ppt on synthesis and degradation of purines and pyrimidines and gout Ppt on power system stability definition Ppt on mobile computing pdf Ppt on intelligent manufacturing solutions Ppt on heritage of india Ppt on features of ms word