Download presentation

Presentation is loading. Please wait.

Published byAbril Whyde Modified about 1 year ago

1
E ENGR-25_Chp2_AirCraft_Separation_.pptx 1 Bruce Mayer, PE Engineering-25: Computational Methods Bruce Mayer, PE Licensed Electrical & Mechanical Engineer Engineering 25 Prob 2.41 AirCraft Separation

2
E ENGR-25_Chp2_AirCraft_Separation_.pptx 2 Bruce Mayer, PE Engineering-25: Computational Methods P2.41 MidAir Collision(?) The position and velocity of two AirCraft, A & B, are shown as below AirCraft Position at 1pm

3
E ENGR-25_Chp2_AirCraft_Separation_.pptx 3 Bruce Mayer, PE Engineering-25: Computational Methods P2.41 Close Miss Goals for P2.41 a)Plot D vs. t until D reaches the MINIMUM VALUE b)Use the roots command to find t such D first = 30 mi

4
E ENGR-25_Chp2_AirCraft_Separation_.pptx 4 Bruce Mayer, PE Engineering-25: Computational Methods P2.41 GamePlan This is a PARAMETRIC Problem TIME is the INDEPENDENT variable For each moment in time, x A and y B Thus for every value of t we can calc x A and y B Then us Pythagorus to find D min Finally, use the roots the command to solve the Pythagorean Quadratic Eqn

5
E ENGR-25_Chp2_AirCraft_Separation_.pptx 5 Bruce Mayer, PE Engineering-25: Computational Methods Time Difference At Start mph mph A ½-Hour Later mph mph

6
E ENGR-25_Chp2_AirCraft_Separation_.pptx 6 Bruce Mayer, PE Engineering-25: Computational Methods MATLAB CODE (May have BOBBY TRAPS) % Bruce Mayer, PE % ENGR25 * 04ep10 % AirCraft NearMiss * AirCraft_NearMiss_Prob2_41_1109.m % % Find tmax using given speeds & distances tmax = max(320/800, 160/410) % % divide guessed tmax in t0 500 pieces t = linspace(0, tmax, 500); % % Calx xA & yB based on t, the starting-positions and speeds xA = *t; yB = *t; % % Calc the corresponding 500 D values with pythagorus xsq = xA.^2; ysq = yB.^2; % sq xA & yB SumxA = sum(xsq); SumyB = sum(ysq); % sum the x & y values SumTot = SumxA + SumyB; % add the sums D = sqrt(xA.^2 + xA.^2); % % Now find value & index (address) for minimum D [Dmin, DminIndex] = min(D) % next the value of t that corresponds to Dmin tmin = t(DminIndex) % % Now Plot The Separation distance vs time plot(t,D, 'linewidth', 3), xlabel('Hours after 1pm');,... ylabel('AirCraft Separation Distance (mi)'),grid % % PART B % must solve pythagorean eqn % => 30 = [xA^2 + yB^2] % subbing for t %=> 30 = [( t)^2 + ( t)^2] % % Can use conv command to square polynomial PA = conv([ ], [-320,800]) PB = conv([ ], [-160,410]) Ptot = PA + PB % % Now subtract 900 from both sides then use roots D30 = roots(Ptot - [ ]) % % Now that we know the "close miss time is hrs Let "zoom in" on the % plot tz = linspace(2.4, 2.65, 500); % % Calx xA & yB based on t, the starting-positions and speeds xAz = *tz; yBz = *tz; % % Calc the corresponding 500 D values with pythagorus xsqz = xAz.^2; ysqz = yBz.^2; % sq xA & yB SumxAz = sum(xsqz); SumyBz = sum(ysqz); % sum the x & y values SumTotz = SumxAz + SumyBz; % add the sums Dz = sqrt(yBz.^2 + yBz.^2); % % Now find value & index (address) for minimum D [Dminz, DminIndexz] = min(Dz) % next the value of t that corresponds to Dmin tminz = tz(DminIndexz) % disp('Getting ready to show ZOOMED plot"; Hit Any Key to continue') pause % % Now Plot The Separation distance vs time plot(tz,Dz, 'linewidth', 3), xlabel('Hours after 1pm');,... ylabel('AirCraft Separation Distance (mi)'),grid

7
E ENGR-25_Chp2_AirCraft_Separation_.pptx 7 Bruce Mayer, PE Engineering-25: Computational Methods

8
E ENGR-25_Chp2_AirCraft_Separation_.pptx 8 Bruce Mayer, PE Engineering-25: Computational Methods

Similar presentations

© 2016 SlidePlayer.com Inc.

All rights reserved.

Ads by Google