Download presentation

Presentation is loading. Please wait.

Published byJoselyn Crosier Modified over 3 years ago

1
Patterson in plane group p2 (0,0) a b SYMMETRY OPERATORS FOR PLANE GROUP P2 1) x,y 2) -x,-y

2
Patterson in plane group p2 (0,0) a b (0.1,0.2) SYMMETRY OPERATORS FOR PLANE GROUP P2 1) x,y 2) -x,-y

3
Patterson in plane group p2 (0,0) a b (0.1,0.2) (-0.1,-0.2) SYMMETRY OPERATORS FOR PLANE GROUP P2 1) x,y 2) -x,-y

4
Patterson in plane group p2 (0,0) a b (0.1,0.2) (-0.1,-0.2) SYMMETRY OPERATORS FOR PLANE GROUP P2 1) x,y 2) -x,-y

5
Patterson in plane group p2 (0,0) a b a b (0.1,0.2) (-0.1,-0.2) SYMMETRY OPERATORS FOR PLANE GROUP P2 1) x,y 2) -x,-y PATTERSON MAP 2D CRYSTAL

6
Patterson in plane group p2 (0,0) a b a b (0.1,0.2) (-0.1,-0.2) SYMMETRY OPERATORS FOR PLANE GROUP P2 1) x,y 2) -x,-y PATTERSON MAP 2D CRYSTAL

7
Patterson in plane group p2 (0,0) a b a b (0.1,0.2) (-0.1,-0.2) SYMMETRY OPERATORS FOR PLANE GROUP P2 1) x,y 2) -x,-y PATTERSON MAP 2D CRYSTAL What is the coordinate for the Patterson peak? Just take the difference between coordinates of the two happy faces. (x,y)-(-x,-y) or (0.1,0.2)-(-0.1,-0.2) so u=0.2, v=0.4

8
Patterson in plane group p2 (0,0) a b a b (0.1,0.2) (-0.1,-0.2) SYMMETRY OPERATORS FOR PLANE GROUP P2 1) x,y 2) -x,-y PATTERSON MAP 2D CRYSTAL What is the coordinate for the Patterson peak? Just take the difference between coordinates of the two happy faces. (x,y)-(-x,-y) or (0.1,0.2)-(-0.1,-0.2) so u=0.2, v=0.4 (0.2, 0.4)

9
Patterson in plane group p2 a (0,0) b PATTERSON MAP (0.2, 0.4) If you collected data on this crystal and calculated a Patterson map it would look like this.

10
Now I’m stuck in Patterson space. How do I get back to x,y, coordinates? a (0,0) b PATTERSON MAP (0.2, 0.4) Use our friends, the space group operators. The peaks positions correspond to vectors between smiley faces. SYMMETRY OPERATORS FOR PLANE GROUP P2 1) x,y 2) -x,-y x y -(-x –y) 2x 2y symop #1 symop #2

11
Now I’m stuck in Patterson space. How do I get back to x,y, coordinates? a (0,0) b PATTERSON MAP (0.2, 0.4) Use our friends, the space group operators. The peaks positions correspond to vectors between smiley faces. SYMMETRY OPERATORS FOR PLANE GROUP P2 1) x,y 2) -x,-y x y -(-x –y) 2x 2y symop #1 symop #2 set u=2x v=2y plug in Patterson values for u and v to get x and y.

12
Now I’m stuck in Patterson space. How do I get back to x,y, coordinates? a (0,0) b PATTERSON MAP (0.2, 0.4) SYMMETRY OPERATORS FOR PLANE GROUP P2 1) x,y 2) -x,-y x y -(-x –y) 2x 2y symop #1 symop #2 set u=2x v=2y plug in Patterson values for u and v to get x and y. u=2x 0.2=2x 0.1=x v=2y 0.4=2y 0.2=y

13
Hurray!!!! SYMMETRY OPERATORS FOR PLANE GROUP P2 1) x,y 2) -x,-y x y -(-x –y) 2x 2y symop #1 symop #2 set u=2x v=2y plug in Patterson values for u and v to get x and y. u=2x 0.2=2x 0.1=x v=2y 0.4=2y 0.2=y HURRAY! we got back the coordinates of our smiley faces!!!! (0,0) a b (0.1,0.2)

Similar presentations

OK

Symmetry Section 9.6. Line Symmetry A figure in the plane has line symmetry if the figure can be mapped onto itself by a reflection in a line. This.

Symmetry Section 9.6. Line Symmetry A figure in the plane has line symmetry if the figure can be mapped onto itself by a reflection in a line. This.

© 2019 SlidePlayer.com Inc.

All rights reserved.

To make this website work, we log user data and share it with processors. To use this website, you must agree to our Privacy Policy, including cookie policy.

Ads by Google