Presentation is loading. Please wait.

Presentation is loading. Please wait.

Artificial Neural Networks And XML Presented by : M. Eftekhari Advisor : Dr. S. Astaneh.

Similar presentations

Presentation on theme: "Artificial Neural Networks And XML Presented by : M. Eftekhari Advisor : Dr. S. Astaneh."— Presentation transcript:

1 Artificial Neural Networks And XML Presented by : M. Eftekhari Advisor : Dr. S. Astaneh

2 Outlines  Introduction  From biological Artificial Neural Nets  Inherent capacities  The Distributed Training Environment (DTE)  Why distributed environment? (Motivation)  Features  JOONE  Xml-Based format for trained Neural Network definition  Motivations  Neural Network Markup Language (NNML)  Decomposition of Neural Nets Model  The neural model description in NNML  Processing of NNML documents  PMML  ….

3 Introduction

4 From biological to Artificial Neuron (Intro.)

5 A simple Artificial Neuron f x1x1 x2x2 w1w1 w 0= w2w2 Activation function Has the role of events that Occur in a real neuron of brain Weights are similar to synapse Sum simulates the dendrites The learning is the process of updating weights Out put connections are similar to axons

6 Inherent capacities (Intro.) The neurons are parallel inside each other due to inherent structure of Neural Network. When a network learns, it works as a autonomous mechanism (speech part of brain). A central mechanism coordinates, schedules and these self-organize parts. (may be ensemble of parts needed) So ANNs can be distributed. A learnt ANNs can be shared to use by other applications.

7 The Distributed Training Environment (DTE)

8 Why distributed environment? (Motivation) use a neural net to resolve complex jobs is not sufficient. For complex problem, net can fall onto a local minima without finding the best results what must be developed is a mechanism to train many neural nets in parallel on the same problem, on several machines, governing the whole process from a central point.

9 Java Object Oriented Neural Engine Joone is a FREE neural net framework to create, train and test neural nets Distributed Training Environment to train in parallel mode many neural networks to find the fittest one for a given problem.

10 Features Centralized control The Final results are logged into a XML file to permit to analyze the results from a custom program/script The training process scale almost linearly adding more machines No manual configuration needed to add or remove machines Possibility to add or remove machines dynamically during the training process The overall process controlled by XML parameters

11 Xml-Based format for trained Neural Network definition

12 Motivations unified way for neural network model definition Interchanging neural models as well as documentation store and manipulating them independently from the simulation system that produced it. The development of the neural-based Web services

13 Neural Network Markup Language (NNML) XML-based language (Neural Network Markup Language) for the neural network model description. NNML as an interface between various software systems concerning neural networks (see Fig of next slide) NNML causes separation of neural networks generators, interpreters, tools for visualization and knowledge extraction (see Fig of next slide) Applied to the distribution of the neural network models Integrating the powerful simulation systems like Matlab with Web interface

14 Neural Network Markup Language (NNML)

15 Decomposition of Neural Nets Model and NNML

16 The neural model description in NNML The problem and model purpose (Task) Data dictionary Data preprocessor Neural network Postprocessor Auxiliary information about the model.

17 The neural model description in NNML A simple neuron Which object Form Which layer Obj

18 Processing of NNML documents Generation and training by means of the neural network simulator. Creating hierarchical model by the interface module on the basis of internal representation. Methods of any XML parser are called, object tree of the model are constructed NNML file is generated. For loading of the ready NNML file, actions are performed in the reverse order.

19 Processing of NNML documents

20 PMML (Predictive Model Markup Language )

21 Introduction The PMML is a set of Document Type Descriptions (DTDs) specified in XML. The first version (1.0) was provided in July 1999 by the Data Mining Group (DMG, A Markup Language for Predictive modeling, but not only restricted to this field. Support only Back propagation Nets despite of previous introduced Method.

22 PMML (Contd.) The PMML 1.1 definition includes DTDs for the following types of models:  1. Naïve bayes  2. Regression Models  3. Decision trees  4. Center and distribution based clusters  5. Sequence and association rules  6. neural nets

23 Advantages of PMML: Removes the issues of incompatibility between applications and proprietary formats. DTDs support proprietary extensions to allow for enriched information storage for specialized tools. Previous solutions to the problem of sharing data models were incorporated into custom-built systems, and thus exchange of models with an application outside of the system was virtually impossible

24 Advantages of PMML For example, it allows users: (sharing the data)  To generate data models using one vendor application.  Use other vendor application to analyze.  Another to evaluate the models.  Another vendor application to visualize the model.

25 PMML (Contd.) The PMML describes the models using eight modules: 1. Header 2. Data Dictionary schema 3. Data Mining schema 4. Predictive model schema 5. Definition for predictive models 6. Definition for ensemble of models 7. Rules for selecting and combining models and ensembles of models 8. Rules for exception handling

26 The role of PMML in the Knowledge Discovery process. C4.5

27 PMML (Contd.) Using PMML to model Association Rules

28 PMML The General Web Architecture Web Warehouse Materialize and manages useful Information on web Application interfaces A software that facilitates the process of Content extraction

29 PMML and ANNs (DTD) NN-NEURON-ID is just a string which identifies a neuron

30 PMML and ANNs (XSD)

31 PMML and ANNs (DTD)

32 PMML and ANNs (XSD)

33 PMML and ANNs (DTD)

34 PMML and ANNs (XSD)

35 PMML and ANNs (DTD)

36 PMML and ANNs (XSD)

37 PMML and ANNs (XSD)

38 PMML and ANNs (XSD)

39 PMML and ANNs (XSD)

40 PMML and ANNs

41 PMML and ANNs    

42 PMML and ANNs 

43 PMML and ANNs

44 PMML and ANNs …. To 9

45 PMML and ANNs …… N1 Id= I0 I

46 PMML and ANNs Output Neuron  N1 Id=10 N2 Id=11 N3 Id=13 No Id=13 output

47 PMML and ANNs 

Download ppt "Artificial Neural Networks And XML Presented by : M. Eftekhari Advisor : Dr. S. Astaneh."

Similar presentations

Ads by Google