Download presentation

Presentation is loading. Please wait.

Published byJane Austin Modified over 2 years ago

1
0 Course Outline n Introduction and Algorithm Analysis (Ch. 2) n Hash Tables: dictionary data structure (Ch. 5) n Heaps: priority queue data structures (Ch. 6) n Balanced Search Trees: general search structures (Ch. 4.1-4.5) n Union-Find data structure (Ch. 8.1–8.5) n Graphs: Representations and basic algorithms Topological Sort (Ch. 9.1-9.2) Minimum spanning trees (Ch. 9.5) Shortest-path algorithms (Ch. 9.3.2) n B-Trees: External-Memory data structures (Ch. 4.7) n kD-Trees: Multi-Dimensional data structures (Ch. 12.6) n Misc.: Streaming data, randomization

2
1 Graphs: directed and undirected and labeled n A GRAPH G = (V, E) where V is a set of vertices (nodes), and E is a set of edges (arcs), i.e., pairs of vertices n D IRECTED graphs (digraphs): edges are directed n U NDIRECTED graphs: edges are undirected n Labeled graphs: edges have labels, directed or undirected a d e b cf j h g i a b c ed

3
2 Adjacency matrix n G=(V,E) and V={v 1,…,v N } n A(i,j) = 1 if (v i,v j ) is in E, A(i,j) = 0 otherwise Space: O(N 2 ) Edge insertion/deletion: O(1) Find all adjacent vertices to a vertex: O(N) abcde a111 b111 c111 d111 e11 abcdefghij a11 b11 c111 d1 e f1 g11 h11 i1 j1

4
3 Adjacency lists n All vertices adjacent to v i are stored in the list adj(v i ) Space: O(N+|E|) Edge insertion/deletions Find all adjacent vertices to a vertex adj(a)= (b, d, e) adj(b)= (a, c, d) adj(c)= (b, d, e) adj(d)= (a, b, c) adj(e)= (a, c) adj(a)= (b, d) adj(b)= (c, f) adj(c)= (a, d, e) adj(d)= (e) adj(e)= () adj(f)= (c) adj(g)= (f, h) adj(h)= (f, j) adj(i)= (h) adj(j)= (I)

5
4 Paths and simple paths n A PATH is a sequence of vertices v 1, …, v k where each (v i, v i+1 ) is an edge n S IMPLE path: v i ¹ v j, except that v 1 may be equal to v k n Path LENGTH : number of edges in the path n A CYCLE : a path v 1, …, v k such that v 1 = v k n Examples: abdcea (undirected), hjihfcad (directed) a b c de a d e b cf j h g i

6
5 Topological sort n Ordering of vertices in a digraph such that if there is an edge from v i to v j, v i appears before v j in the ordering n Complexity: O(|V|+|E|) a d b cf h e g i proc topsort () for each vertex v do if in[v]=0 then Enqueue(v,Q) while not empty(Q) do Dequeue(v,Q) print(v) for each vertex w in adj[v] do if (--in[w]=0) then Enqueue(w,Q) O(|V|) O(|E|)

7
6 Unweighted shortest path n Find length of the shortest path from a vertex v n Naïve algorithm would take time O(|V| 2 ) n An O(|V|+|E|) algorithm: a d e b cf j h g i procedure shortest-path(v) for each vertex x do visited[x] = false dist[x] = infinity visited[v] = true dist[v] = 0 Enqueue(v,Q) while not Empty(Q) do Dequeue(x,Q) for each w in adj[x] do if not visited[w] visited[w] = true dist[w] = dist[x]+1 Enqueue(w,Q)

8
7 Graph traversal: breadth-first search a b c de a d e b cf j h g i n Complexity: O(N+|E|) for each vertex v do visited[v] = false for each vertex v do if visited[v] = false BFS (v) proc BFS (v) // Q is a queue of vertices visited[v] = true Enqueue(v,Q) while not Empty(Q) do Dequeue(x,Q) for each vertex w in adj[x] do if not visited[w] visited[w] = true Enqueue(w,Q) O(|V|) O(|E|)

Similar presentations

OK

Graph Dr. Bernard Chen Ph.D. University of Central Arkansas.

Graph Dr. Bernard Chen Ph.D. University of Central Arkansas.

© 2018 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Ppt on regional trade agreements advantages One act play ppt on ipad Ppt on heritage tourism in india Ppt on mauryan art Ppt on sustainable agriculture in india Ppt on web browser and its features Ppt on field study 4 Ppt on seven segment display truth Ppt on resources of water Ppt on types of clothes