Download presentation

Presentation is loading. Please wait.

Published byOwen Morgan Modified over 2 years ago

1
CS 206 Introduction to Computer Science II 03 / 27 / 2009 Instructor: Michael Eckmann

2
Michael Eckmann - Skidmore College - CS 206 - Spring 2009 Today’s Topics Questions? Comments? Graphs –Definitions –Traversals Breadth First Search Depth First Search Shortest Path algorithms

3
Graphs Graphs consist of a set of vertices and a set of edges. An edge connects two vertices. Edges can be directed or undirected. Directed graphs' edges are all directed. Undirected graphs' edges are all undirected. Directed graphs are sometimes called digraphs. Two vertices are adjacent if an edge connects them. The degree of a vertex is the number of edges starting at the vertex. Two vertices v1 and v2 are on a path if there are a list of vertices starting at v1 and ending at v2 where each consecutive pair of vertices is adjacent.

4
Graphs The length of a path is the number of edges in the path. A simple path is one whose edges are all unique. A cycle is a simple path, starting and ending at the same vertex. A vertex is reachable from another vertex if there is a path between them. A graph is connected if all pairs of vertices in the graph have a path between them. Example on the board of a connected and an unconnected graph. A complete graph (aka fully connected graph) is a connected graph where all pairs of vertices in the graph are adjacent. Example on the board.

5
Graphs Connectivity of a digraph –A digraph is strongly connected if there is a path from any vertex to any other vertex (following the directions of the edges) –A digraph is weakly connected if in its underlying undirected graph, there is a path from any vertex to any other vertex Degree of a vertex in a digraph –In-degree of a vertex is the number of edges entering the vertex –Out-degree of a vertex is the number of edges leaving the vertex

6
Graphs Edges often have a weight associated with them. An edge's weight is some numeric value. Example on the board of using graphs to represent real world problems –e.g. A weighted graph that connect cities (vertices) and the weights of the edges might be length of time to travel between the two cities. –A graph whose vertices represent buildings on campus and edges are sidewalks connecting the buildings.

7
Graphs Graphs can be represented in programs in many ways. Two common ways to represent them are: –adjacency matrix --- each row number r represents a vertex and the value at column c is true if there's an edge from vertex r to vertex c, false otherwise Notice that the type stored in the adjacency matrix is boolean Could we use this for weighted graphs? Could we use this for directed graphs? –edge lists store a linked list for each vertex, v i items in the list are those vertices v j for which there's an edge from v i to v j

8
Graphs Graph traversal –Breadth first search (BFS) Pick a vertex at which to start Visit all of the adjacent vertices to the start vertex Then for each of the adjacent vertices, visit their adjacent vertices And so on until there are no more adjacent vertices Do not visit a vertex more than once –Only vertices that are reachable from the start vertex will be visited --- example on the board. –The order that vertices in a BFS are visited are in increasing order of length of path from starting vertex. –Those that have the same path length from the start vertex can be visited in any order. –Example of BFS on the board.

9
Graphs Implementation of breadth first search –Need a flag for each vertex to mark it as unvisited, waiting, or visited – so we don't visit vertices more than once. –Keep a queue which will hold the vertices to be visited –Keep a list of vertices as they are visited –BFS algorithm: Mark all vertices as unvisited Initially enqueue a vertex into the queue, mark it as waiting While the queue is not empty –Dequeue a vertex from the queue –Put it in the visited list, mark it as visited –Enqueue all the adjacent vertices that are marked as unvisited to the vertex just dequeued. –Mark the vertices just enqueued as waiting

10
Graphs Let's implement breadth first search (BFS).

11
Graphs Graph traversal –Depth first search (DFS) Pick a vertex at which to start Visit one of its adjacent vertices then visit one of that one's adjacent vertices, and so on until there is no unvisited adjacent vertex of the one we're working on. Then backtrack one level and visit another adjacent vertex from that one and repeat. Do this until we're at the start vertex and there's no more unvisited adjacent vertices Do not visit a vertex more than once –Only vertices that are reachable from the start vertex will be visited –Those vertices that are adjacent to a vertex can be visited in any order. –Example of DFS on the board.

12
Graphs Shortest path algorithms –problem is to find the shortest path from one given vertex to each of the other vertices. –output is a list of paths from given vertex to all other vertices –what real world examples might ever want to find the shortest path?

13
Graphs Shortest path algorithms –problem is to find the shortest path from one given vertex to each of the other vertices. –output is a list of paths from given vertex to all other vertices –the shortest path could be in terms of path length (number of edges between vertices e.g. a direct flight has path length 1, flights with connecting flights have path length > 1 –the shortest path could be in terms of minimum weight for weighted graphs (example on the board.) e.g. finding the lowest cost flights Dijkstra's algorithm solves this problem

14
Graphs the shortest path could be in terms of path length (number of edges between vertices) e.g. a direct flight has path length 1, flights with connecting flights have path length > 1 –Initialize all lengths to infinity –Can process the graph in a BFS starting at the given vertex –When visit a node, replace it's length with the current length. –The BFS uses a queue. –Let's implement this.

Similar presentations

OK

CS 206 Introduction to Computer Science II 11 / 10 / 2008 Instructor: Michael Eckmann.

CS 206 Introduction to Computer Science II 11 / 10 / 2008 Instructor: Michael Eckmann.

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Ppt on bluetooth technology download Ppt on places in our neighbourhood clip Ppt on pricing policy in marketing Ppt on operating system Ppt on bing search engine Ppt on word association test Poster template free download ppt on pollution Ppt on series and parallel combination of resistors experiment Ppt on revolt of 1857 in india Ppt on idiopathic thrombocytopenia purpura in children