Download presentation

1
EXAMPLE 3 Use synthetic division Divide f (x)= 2x3 + x2 – 8x + 5 by x + 3 using synthetic division. SOLUTION – – – –21 2 – –16 2x3 + x2 – 8x + 5 x + 3 = 2x2 – 5x + 7 – 16 ANSWER

2
EXAMPLE 4 Factor a polynomial Factor f (x) = 3x3 – 4x2 – 28x – 16 completely given that x + 2 is a factor. SOLUTION Because x + 2 is a factor of f (x), you know that f (–2) = 0. Use synthetic division to find the other factors. – –4 – –16 – 3 – –

3
**Use the result to write f (x) as a product of two **

EXAMPLE 4 Factor a polynomial Use the result to write f (x) as a product of two factors and then factor completely. f (x) = 3x3 – 4x2 – 28x – 16 Write original polynomial. = (x + 2)(3x2 – 10x – 8) Write as a product of two factors. = (x + 2)(3x + 2)(x – 4) Factor trinomial.

4
GUIDED PRACTICE for Examples 3 and 4 Divide using synthetic division. 3. (x3 + 4x2 – x – 1) (x + 3) x2 + x – 4 + 11 x + 3 ANSWER 4. (4x3 + x2 – 3x + 7) (x – 1) 4x2 + 5x + 2 + 9 x – 1 ANSWER

5
GUIDED PRACTICE for Examples 3 and 4 Factor the polynomial completely given that x – 4 is a factor. f (x) = x3 – 6x2 + 5x + 12 ANSWER (x – 4)(x –3)(x + 1) f (x) = x3 – x2 – 22x + 40 ANSWER (x – 4)(x –2)(x +5)

Similar presentations

OK

GG Consulting, LLC I-SUITE. Source: TEA SHARS Frequently asked questions 2.

GG Consulting, LLC I-SUITE. Source: TEA SHARS Frequently asked questions 2.

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Ppt on sanskritization Ppt on brand marketing manager Ppt on history of atom Appt only salon Ppt on formal education Ppt on political parties and electoral process in usa Ppt on hiroshima and nagasaki attacks Ppt on unipolar nrz Ppt on quality education fund Ppt on phonetic transcription exercises