Presentation is loading. Please wait.

Presentation is loading. Please wait.

Conceptions of secondary students on phenomenology of superconduction School experimentations Marisa Michelini, Lorenzo Santi, Alberto Stefanel Research.

Similar presentations


Presentation on theme: "Conceptions of secondary students on phenomenology of superconduction School experimentations Marisa Michelini, Lorenzo Santi, Alberto Stefanel Research."— Presentation transcript:

1 Conceptions of secondary students on phenomenology of superconduction School experimentations Marisa Michelini, Lorenzo Santi, Alberto Stefanel Research Unit in Physics Education, DCFA, University of Udine - via delle Scienze 206, 33100 Udine, Italy marisa.michelini@uniud.it, Lorenzo.santi@uniud.it, alberto.stefanel@uniud.it marisa.michelini@uniud.itLorenzo.santi@uniud.italberto.stefanel@uniud.it Introduction Teaching and learning Modern Physics is a challenge for Physics Education research (PE 2000; AJP 2002, Meijer 2005; Johanson, Milstead 2008; Steinberg, Oberem 2000). Nowadays superconductivity can be brought in the educational laboratory both for qualitative exploration, both measurements with sensors interfaced to the computer. In the context of a research project to renew physics curricula introducing modern physics, an educational path for high school was developed to introduce superconductivity, integrating it in the courses of electromagnetism. The educational path implement an IBL approach using a set of hands- on/minds-on apparatuses designed with simple materials and High Technology (Kedzierska et al. 2010; Michelini, Viola 2011), YBCO samples, USB probe to explore R vs T (Gervasio, Michelini 2010). The rational of the path on Meissner effect for HSS Students 1) YBCO disc at T=T e : no magnetic properties 2) YBCO at T=T NL : evident levitation of a magnet magnetic properties? 3) Systematic exploration of the interaction of the SC with different magnets and different objects (ferromagnets in primis), with different configurations  It always shows repulsive effects close to a magnet: an YBCO at T  TNL is diamagnetic. 4) The interaction between SC and a magnet do not depend on the pole put close to the surface of the magnet, the equilibrium position is always the same.. 5) The SC tends to react to an external magnetic field creating a counter field to maintain B=0 inside (Meissner effect). 6) The magnet would be stopped just falling over a conductor with R=0   B=0 Meissner effect 7) Experimental measurement R vs T at phase transition 10) From the model of conduction to the model of superconduction: analysis of the energy of the electrons inside of a crystal lattice and Cooper pairs formation 11) persistent currents and pinning effect and the correlated phenomenology (i.e. magnetic suspension, the MAGLEV train model). N Context Type of school Site grade N class Phy years h per week age N Students s.y. h driver 1 CurricolarSci. LyceumPordenone424317-183405/0615teacher 2 CurricolarSci. LyceumUdine222315-163305/0610teacher 3 CurricolarTech. LyceumUdine513317-182505/0614Prospective teacher 4 CurricolarTech. LyceumScicli (Ragusa)513317-18805/0620teacher 5 CurricolarClass. Lyceum Vibo Valencia (Ragusa) 512217-18505/0620teacher 6 CurricolarSci. Lyceum Comiso (Ragusa) 513317-181105/0629teacher 7 CurricolarSci. LyceumBolzano523317-183605/0611teacher 8CurricolarSci. LyceumModena1-213317-182705/0612teacher 9 CurricolarSci. Lyceum Tricarico (Matera) 523317-18635/068teacher 10 CurricolarProfession Sc. Gemona (Udine) 1-222315-162505/0621teacher 11CurricolarTech. LyceumUdine513318-192106/079teacher 12 CurricolarProfession Ist. Gemona (Udine) 1-222314-16256/0721teacher 13CurricolarSci. LyceumBolzano522315-16386/0711teacher 14 CurricolarProfession Ist.Bolzano512318-19706/075teacher 15 CurricolarTech. LyceumPalermo533317-185306/0721teacher 16Project "Maturità" 2008 Sci. LyceumUdine563318-194207/084Res 17 Summer School FM 2009 DifferentUdine4-5402-3-53 17-18- 19 4208/096Res 18Project Guidance Sci. LyceumPordenone515318-191308/096Res 19Curricular - Lab IDIFO Sci. LyceumTolmezzo513318-192008/098teacher 20 Young 2010 - LACOMAS Sci. LyceumUdine5203318-199009/102Researcher 21Curricular - Lab IDIFO Geom. Inst.Milano313316-172008/099CP-IDIFO teacher 22Curricular - Lab IDIFO Profession Ist.Modena213315-162008099CP-IDIFO teacher 23Curricular - Lab IDIFO Sci. LyceumBolzano513318-192008/099teacher 24Curricular - Lab IDIFO Tech. LyceumTreviso513318-192008/099CP-IDIFO teacher 25Curricular - Lab IDIFO Sci. LyceumBolzano513318-191508/094CP-IDIFO teacher 26Curricular - Lab IDIFO Sci. LyceumMilano513318-191508/096CP-IDIFO teacher 27Curricular - Lab IDIFO DifferentUdine4-5202-33 17-18- 19 8010/114Res 28Curricular - Lab IDIFO DifferentCosenza573-5318-195010/114Res 29Curricular - Lab IDIFO Sci. LyceumCrotone533318-192010/116Res 30 Summer School FM 2011 DifferentUdine4-592-3-53 17-18- 19 4010/116Res 31 Summer School Pigelleto DifferentUdine4-5402-3-53 17-18- 19 4610/116Res 32Curricular - Lab IDIFO Sci. LyceumUdine513318-191611/1212Res/teach 33Curricular - Lab IDIFO Sci. LyceumUdine513318-192712/139Res/teach 34Curricular - Lab IDIFO Sci. LyceumUdine513318-192312/13 Res/teach 35Curricular - Lab IDIFO Sci. LyceumUdine513318-191612/139Res/teach 36Curricular - Lab IDIFO Sci. Lyceum Tolmezzo (Udine) 513318-192312/1312Res/teach 37Curricular - Lab IDIFO Sci. Lyceum Monfalcone (GO) 523318-194012/138Res/teach 38Curricular - PhD Exp Sci. LyceumSalerno523318-192012/136Res/teach 39Curricular - PhD Exp Sci. LyceumSalerno523318-192012/136Res/teach 40Curricular - PhD Exp Sci. LyceumSalerno523318-192012/136Res/teach 41 Summer School MP 2013 DifferentUdine4-5362-3-5317-193620136Res 42 Summer School MP 2014 DifferentUdine4-5362-3-5317-193020146Res Research experimentation summary: 14 sites (all around in Italy) 1199 students of 220 classes (last two grade of the Italian High School) Explorative activities (informal learning) 4 contexts, with 715 students) Pre/post test REFERENCES AJP, (2002) Special Issues of Am. J. Phys. 70 (3) PE (2000) Special Issues of Phys Educ.35 (6) Johansson K E, Milstead D (2008) Phys. Educ. 43, 173-179 Steinberg R. N., Oberem G. E. (2000) JCMST 19 (2) 115-136  F. Ostermann, F., M. A. Moreira, Updating the physics curriculum in high schools, Revista de Enseñanza de las Ciencias, 3 (2), (2004). pg. 190-201  H. González-Jorge, G. Domarco (2004). Superconducting cylinders aid in an understanding of current induction, Phys. Educ. 39, 234 Essén H., Fiolhais N. (2012) A.J.P., 80 (2), 164-169 F. Erickson “Qualitative research methods for Science Education”.in IHSE. Part 2, ed. by B.J. Fraser, K.G. Tobin, (Kluvier, Dordrecht, 1998), pp. 1155-1174. H. Niedderer, “Qualitative and quantitative methods of investigating alternative frameworks of students”. Paper presented to the AAPT-AAAS meeting (1989).  E. Kedzierska, F. Esquembre, L. Konicek, W. Peeters, A. Stefanel, V. S. Farstad, MOSEM 2 project: Integration of data acquisition, modelling, simulation and animation for learning electromagnetism and superconductivity, Il Nuovo Cimento, 33 C, 3, DOI: 10.1393/ncc/i2010-10616-y, NIFCAS 33(3), (2010), pg. 64-74  A. Stefanel, M. Michelini, L. Santi “High school students analyzing the phenomenology of SC and constructing model of the Meissner effect” Proc. of te WCPE2012, (Pegem, Istanbul, 2014), pp.1253-1266.  T. Greczylo, F. Bouquet, G. Ireson, M. Michelini, V. Engstrøm, High-Tech-kit – the set of advanced activities from the MOSEM project, in Multimedia in Physics Teaching and Learning, Michelini M, Lambourne R, Mathelisch L eds, SIF, Bologna and in Il Nuovo Cimento, 33 C, 3 (DOI 10.1393/ncc/i2010-10621-2) NIFCAS 33(3) 1-238, pp.221-229E. Kedzierska et al., Il Nuovo Cimento, 33 (3) (2010), pg. 65-74.  M. Michelini, L. Santi, A. Stefanel (2014) Basic concept of superconductivity: a path for high school, in Frontiers of Fundamental Physics and Physics Education Research, Burra G. S., Michelini M, Santi L, eds, Book of sel. papers presented in the International Symposium FFP12, Springer, Cham, Heidelberg, NY, Dordrecht, London, [978-3-319-00296-5] pp. 453-460. N. J. Nersessian. Synthese 80 (1), 163-183, (1989). Marton, F. (1988). In Qualitative res. in educ. ed by B. Sherman & Webb (London: Faler) p 141-161. J. Park, J. Kim,, M. Kim, M. Lee. Int. J. Sci. Educ., 23 12, 1219-1236 (2001). D. N. Perkins, T. A. Grotzer. Models and moves in Proceedings of AERA Conf., New Orleans, LA (2000). Discussion The students use concepts as field lines, magnetization vector, EM induction, as tools to construct a link between magnetic and electric properties of a SC, describing the phenomenology of the Meissner effect, according to the suggestion of many authors (Essen, Fiolhas 2012). In the phenomenological description of the SC the aim is the recognition of the role of the EM induction. How this state is produced or the phase transition occurs, it is described as results of creation of the Cooper pairs. From research experimentations carried out in different contexts emerges that the majority of students recognize the change in the magnetic properties of the SC under Tc, the B=0 condition, the different nature of the magnetic suspension and the levitation of a magnet on a YBCO. Tutorials From the tutorial (N=240): according to the observations carried out, which aspects characterize the Meissner effect? C) R=0, and exist Tc (15%) D) B=0 and R=0 (13%) NA: not answer (12%) A) Existence of Tc and/or repulsion/levitation (21%) B) diamagnetism of YBCO (B=0); B line do not cross the magnet; YBCO screens the magnetic properties) in more than half of cases also Tc (38%) From the test: High School Experimentation in Udine-Salerno-Tolmezzo 122 students (13 grade – 18 aged)


Download ppt "Conceptions of secondary students on phenomenology of superconduction School experimentations Marisa Michelini, Lorenzo Santi, Alberto Stefanel Research."

Similar presentations


Ads by Google