Presentation is loading. Please wait.

Presentation is loading. Please wait.

Processing of Powder Metals, Ceramics, Glass & Superconductors

Similar presentations


Presentation on theme: "Processing of Powder Metals, Ceramics, Glass & Superconductors"— Presentation transcript:

1 Processing of Powder Metals, Ceramics, Glass & Superconductors

2 Powder Metals Commonly used metals in P/M
Iron,Tin, Copper, Aluminum, and Nickel It is a completive process with forging and machining Parts can weigh as much as little as 2.5Kg or up to 50Kg

3 Powder Metallurgy c a b Fig: (a)Examples of typical parts made by powder-metallurgy processes. (b) Upper trip lever for a commercial irrigation sprinkler, made by P/M. This part is made of unleaded brass alloy; it replaces a die-cast part, with a 60% savings. (c) Main-bearing powder metal caps for 3.8 and 3.1 liter General Motors automotive engines.

4 Production of Metal Powders
Powder production Blending Compaction Sintering Finishing operations

5 Particle Size, Distribution, and shape
Particle size is measured by screening In addition to screen analysis one can use: Sedimentation – measuring the rate that particles settle in a fluid Microscopic analysis – using a scanning electron microscope Light scattering Optical – particles blocking a beam of light that is sensed by a photocell Suspending particles in a liquid & detecting particle size and distribution Fig: Particle shapes in metal powders,and the processes by which they are produced.Iron powders are produced by many of these processes

6 Powder Particles Fig : (a) Scanning electron-microscopy photograph of iron-powder particles made by atomization. (b) Nickel-based superalloy powder particles made by the rotating electrode process.

7 Methods of Powder Production
Fig: Methods of mechanical communication, to obtain fine particles: (a) roll crushing, (b) ball mill, & (c) hammer milling Fig : Methods of metal-powder production by atomization;(a) melt atomization; (b) atomization with a rotating consumable electrode

8 Blending Powders Blending powders is the second step in the P/M process Powders made by different processes have different sizes and shapes and must be well mixed Powders of different metals can be mixed together Lubricants can be mixed with the powders to improve their flow characteristics Fig: Some common equipment geometries for mixing or blending powders. (a) cylindrical, (b) rotating cube, (c) double cone, and (d) twin shell.

9 Compaction of Metal Powders
Blended powders are pressed together The powder must flow easily into the die Size distribution is an important fact They should not be all the same size Should be a mixture of large and small particles The higher the density the higher the strength Fig: Compaction of metal powder to form a bushing.The pressed powder part is called green compact. (b) Typical tool and die set for compacting a spur gear

10 Equipment Uses 100-300 ton press
Selection of the press depends on the part and the configuration of the part Fig: A7.3 MN (825 ton) mechanical press for compacting metal powder.

11 Isostatic Pressing Cold isostatic Pressing (CIP)
Metal powder is placed in a flexible rubber mold Pressurized hydrostatically Uses pressures up to 150 KSI Typical application is automotive cylinder liners Fig: Schematic diagram, of cold isostatic, as applied to forming a tube.The powder is enclosed in a flexible container around a solid core rod.Pressure is applied iso-statically to the assembly inside a high-pressure chamber.

12 Isostatic Pressing Hot Isostatic pressing
Container is made of high-melting-point sheet metal Uses a inert gas as the pressurizing medium Common conditions for HIP are 15KSI at 2000F Mainly used for super alloy casting Fig: Schematic illustration of hot isostatic pressing.The pressure and temperature variation vs.time are shown in the diagram

13 Punch and Die Materials
Depends on the abrasiveness of the powder metal Tungsten-carbide dies are used Punches are generally made of the similar materials Dimensions are watched very close

14 Metal Injection Molding
MIM uses very fine metal powders blended with a polymer The molded greens are then placed in a furnace to burn off the plastics Advantages of injection molding Produces complex shapes Mechanical properties are nearly equal to those of wrought products

15 Other Shaping Processes
Rolling – powder is fed though the roll gap and is used to make coins and sheet metal Extrusion – has improved properties and parts my be forged in a closed die to get final shape Pressureless compaction – gravity filled die and used to make porous parts Ceramic molds – molds are made by made by investment casting and the powder is compressed by hot isostatic pressing Spray deposition – shape-generation process An example of powder rolling

16 Sintering Sintering - Green compacts are heated in a furnace to a temperature below melting point Improves the strength of the material Proper furnace control is important for optimum properties Fig: Schematic illustration of two mechanism for sintering metal powders: (a) solid-state material transport; (b) liquid-phase material transport.R= particle radius, r=neck radius, and p=neck profile radius

17 Sintering Particles start forming a bond by diffusion
Vapor-phase transport – heated very close to melting temperature allows metal atoms to release to the vapor phase Mechanical Properties

18

19 Secondary & Finishing Operations
To improve the properties of sintered P/M products several additional operations may be used: Coining and sizing – compaction operations Impact forging – cold or hot forging may be used Parts may be impregnated with a fluid to reduce the porosity Fig: Examples of P/M parts,showing poor designs and good ones.Notes that sharp radii and re entry corners should be avoided and that threads and transverse holes have to be produced separately by additional machining operations.

20 Secondary & Finishing Operations
Infiltration – metal infiltrates the pores of a sintered part to produce a stronger part and produces a pore free part Other finishing operations Heat treating Machining Grinding Plating

21 Design Considerations for P/M
Design principles to consider Shape of the compact must be simple and uniform Provision must be made for the ejection of the part Wide tolerances should be used when ever possible

22 Process Capabilities It is a technique for making parts from high melting point refractory metals High production rates Good dimensional control Wide range of compositions for obtaining special mechanical and physical properties

23 Process Capabilities Limitations High cost
Tooling cost for short production runs Limitations on part size and shape Mechanical properties of the part Strength Ductility

24 Economics of Powder Metallurgy
Competitive with casting and forging High initial cost Economical for quantities over 10,000 pieces Reduces or eliminates scraps

25 Shaping Ceramics Processing ceramics
Crushing or grinding the raw materials in to very fine particles Mixing with additives Shaping, drying , and firing the material

26 SLIP CASTING

27 Processing steps involved in making ceramic parts


Download ppt "Processing of Powder Metals, Ceramics, Glass & Superconductors"

Similar presentations


Ads by Google