Download presentation

Presentation is loading. Please wait.

Published byPaula Littlepage Modified over 3 years ago

1
Chapter 3 Elementary Number Theory and Methods of Proof

2
3.5 Direct Proof and Counterexample 5 Floor & Ceiling

3
Definition – Floor Given any real number x, the floor of x, denoted x, is defined as: x = n ⇔ n ≤ x < n + 1. – Ceiling Given any real number x, the ceiling of x, denoted x, is defined as: x = n ⇔ n-1 < x ≤ n.

4
Examples Compute x and x for the following: – 25/4 25/4 = 6+ 1/4 = 6 25/4 = 6+ 1/4 = 7 – 0.999 0.999 = 0 + 999/1000 = 0 0.999 = 0 + 999/1000 = 1

5
Examples The 1,370 soldiers at a military base a re given the opportunity to take buses into town for an evening out. Each bus holds a maximum of 40 passengers – What is the maximum number of buses the base will send if only full buses are sent? 1,370/40 = 34.25 = 34 – How many buses will be needed if a partially full bus is allowed? 1,370/40 = 34.25 = 35

6
Addition Property of Floor Does x + y = x + y? Can you find a counterexample where the case is not true. If so, then you can prove that equality is false. – How about x = ½ and y = ½ ? ½ + ½ = 1 = 1 ½ + ½ = 0 + 0 = 0 hence, the equality is false.

7
Proving Floor Property Prove that for all real numbers x and for all integers m, x + m = x + m – Suppose x is a particular but arbitrarily chosen real number and m is particular but arbitrarily chosen integer. – Show: x + m = x + m Let n = x, n is integer n ≤ x < n+1 n + m ≤ x + m < n + m + 1 (add m to all sides) x + m = n + m (from previous) since n = x Thus x + m = x + m Theorem 3.5.1

8
Floor of n/2 Theorem 3.5.2 Floor of n/2 – For any n, n/2 = n/2 (if n even) or (n-1)/2 (if n odd) Examples – Compute floor of n/2 for the following: n = 5: 5/2 = 2 ½ = 2 = (5-1)/2 = 2 n = 8: 8/2 = 4 = 4 = (8)/2 = 4

9
Div / Mod and Floor There is a relationship between div and mod and the floor function. – n div d = n / d – n mod d = n – dn/d From the quotient-remainder theorem, n = dq + r and 0≤r

Similar presentations

OK

1 Set Theory Second Part. 2 Disjoint Set let A and B be a set. the two sets are called disjoint if their intersection is an empty set. Intersection of.

1 Set Theory Second Part. 2 Disjoint Set let A and B be a set. the two sets are called disjoint if their intersection is an empty set. Intersection of.

© 2018 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Ppt on views in sql Ppt on area of parallelogram word Ppt on regional trade agreements notified Ppt on aditya birla retail Ppt on as 14 amalgamation meaning Ppt on electrical circuit breaker Ppt on marketing management by philip kotler's segment-by-segment Ppt on fire management Ppt on manufacturing industries for class 8 Ppt on entisols