Download presentation

Presentation is loading. Please wait.

Published byBrandon Wooding Modified over 2 years ago

1
University of Southern California Department of Mathematics University of Southern California Department of Mathematics Modeling and Detection of Sudden Spurts in Activity Profile of Terrorist Groups QMDNS May 1, 2012 Vasanthan Raghavan Joint work with Aram Galstyan and Alexander Tartakovsky 1

2
Broad Objectives Terrorism is no longer a shocking word to most of us! Ongoing radicalization of different interest groups Rise of social media has made tracking terrorist activity a harder task Objective 1: Development of data-driven probabilistic models of activity of adversarial networks based on interacting hierarchical hidden Markov models Objective 2: Develop methods for model learning inferencing – rapid detection and tracking of changes in adversarial behavioral patterns and objectives based on optimal nonlinear filtering and quickest changepoint detection techniques 2

3
Features of Activity Profile Collecting terrorism data is a painful exercise! Open-source databases: ITERATE, RDWTI, GTD, etc. Temporal ambiguity (time-scale of modeling = Days) Attributional ambiguity (turf warfare) Data sparsity (604 attacks over 9 years) Missing data, mis-labeled data Source: RAND Database on Worldwide Terrorism Incidents (RDWTI) 3

4
Model for Terrorist Activity Observation Period: Observations: No. of attacks = History of group: Model for activity profile Desired Qualities in an Ideal Model: Describes data sufficiently accurately Motivated by a small set of hypotheses Robust to looseness in hypothesis statements Described by few parameters Robust to missing or mis-labeled data 4

5
Existing Models Type 1: Classical time-series techniques Fit trend, seasonality and stationary components to time-series [Enders & Sandler] Quadratic or cubic trend = 4 parameters, seasonality = 3, stationary part = 1 Fit lagged value of endogenous variables, and other variables [Barros] 8 or more model parameters Key Theme: Good-to-acceptable fit for time-series at the cost of large number of parameters in a model with complicated dependencies Type 2: Group-based trajectory analysis Identify cases with similar development trends [Nagin] Cox proportional hazards model + logistic regression methods for model selection [LaFree, Dugan & co-workers] Key Theme: Contagion theoretic viewpoint Current activity of group is influenced by past history of group Attacks are clustered 5

6
Self-exciting Hurdle Model Type 3: Self-exciting hurdle model Puts the contagion point-of-view on a theoretical footing Motivated by similar model development in Earthquake models – Aftershocks are function of current shock Inter-gang violence – Action-reaction violence between gangs Epidemiology – immigrants + offsprings in a cell colony [Porter & White 2012, White, Porter & QMDNS 2010, Erik Lewis] Hurdle probability component: Accounts for few attacks Self-exciting component: Accounts for clustering of attacks Key Theme: Excellent model-fit Explains clustering of attacks from a theoretical perspective Self-exciting component can be complicated more parameters Is a self-exciting model necessary to explain clustering? 6

7
Motivating Hypotheses Hypothesis 1: Current activity of the group depends on past history only through k dominant states (that remain hidden) Hypothesis 2: Of these k states, the two most dominant are Its Capabilities ( ) – Manpower assets, special skills (bomb-making, IED), propaganda warfare skills, logistics skills, coordination with other groups, ability to raise finances, etc. Its Intentions ( ) – Guiding ideology/philosophy (e.g., Marxist-Leninist- Maoist thought, political Islam), designated enemy group, nature of high profile attacks, nature of propaganda warfare, etc. [Cragin and Daly, “The dynamic terrorist threat: An assessment of group motivations and capabilities in a changing world”] 7

8
Motivating Hypotheses Hypothesis 3: Mature group Intentions are to attack (more or less) Change in capabilities is primarily responsible for change in attack patterns A d-state model for Capabilities d = 2: Active state (high capability/strong), Inactive state (low capability/weak) Observation density: Different possibilities (Poisson, shifted Zipf, geometric, etc.) 8 Hurdle/State transitions Data rarity Self-exciting comp./Diff. rates Clustering

9
Consequences Metrics to capture capabilities of group Time–window: No. of days of terrorist activity in a day time-window (X n ) – measures resilience of group [Santos] No. of attacks in a day time-window (Y n ) – measures level of coordination in group [Lindberg] Consequence 1: where Consequence 2: Time to next day of terrorist activity is appx. exponential The days of activity form a Poisson process for Consequence 3: Y n is compound Poisson whose density can be written in terms of density of M i 9

10
Case-Study 1: FARC Revolutionary Armed Forces of Colombia (FARC) Oldest and largest terrorist group in the Americas Marxist-Leninist ideology, anti-establishmentist Uses guerilla warfare Actively involved in cocaine cultivation and trans-shipment to U.S. and W. Europe, kidnapping rings, … Database used : RAND Database on Worldwide Terrorism Incidents (RDWTI) Time-period of interest: 1998 – 2007 Why FARC? Ans: Reliable dataset from RDWTI Dominant in Colombia Less ambiguity in terms of other groups’ attacks Anti-establishment group Strong signature in attack profile Easy to differentiate FARC from non-FARC attacks in case of ambiguity 10

11
Activity Profile Why 1998 – 2007? Ans: Two key geo-political events Spurt 1 1997: Colombia becomes leading cultivator of coca 1999–2000: Plan Colombia with U.S. aid 2001–2002: President Uribe’s election on anti-FARC plank Spurt 2 2003–2004: Anti-FARC efforts bear fruit 2005 – 2006: President Uribe’s re-election bid and local elections Elections, Uribe’s win, Plan Colombia, cocaine fields destroyed Local elections, Pres. Uribe’s successful bid Becomes leading cultivator of coca Massive increase in Plan Colombia funding announced 11

12
Models for M i 12

13
Model Verification More attacks, Good first- order fit Heavy tails Large inter- arrival time, Good fit Normal Activity Profile Reduced inter- arrival time, Good first-order fit Spurt in Activity Fewer no. of attacks, Good fit Normal Activity Profile Spurt in Activity 13

14
Case-Study 2: Shining Path Shining Path (Sendero Luminoso) of Peru Marxist-Leninist ideology, anti-establishmentist, attacks perceived interventionist forces Actively involved in cocaine cultivation and trans-shipment to U.S. and W. Europe Database used : RDWTI Time-period of interest: 1981 – 1996 (full cycle in Sh. Path’s evolution) Spurt 1 Early 1980s: Becomes violent 1981–1984: Tepid response from govt., seizes initiative, stabilizes Downfall 1 1985–1986: Attack on Pres. Elections in ‘85, COIN ops. slight lull Spurt 2 1987–1990: Reorganization in early ‘87, stabilizes 1991: Excessively violent, Sh. Path controls center and south of Peru and in outskirts of Lima Downfall 2 1992: Personality cult around leader, disrespect for indigenous culture, loss of support base, institutional apathy, Guzman captured in Sept 1993–1996: Death of outfit 14

15
Activity Profile 15

16
Models for M i 16

17
Model Verification Heavy tails Beginning of activity, Good fit Intense activity, Good first-order fit Stabilization, Good first- order fit Decay and death, Good fit 17

18
Quickest Changepoint Detection Changepoint ( ): Point of transition from normal behavior to abnormal behavior Statistical model: Density changes from f to g at Goal: Detection procedure (stopping time) to detect quickly without too many false alarms Numerous applications: anomaly detection, failure detection, process/quality control, intrusion detection, target detection, finance, etc. Simplest setting: Observations are i.i.d. both pre- and post-change 18

19
Proposed Solution 1 (EWMA) Changepoint detection procedures Page’s Cumulative Sum (CUSUM) test Shiryaev-Roberts (S-R) test Disadvantage: Require pre- and post-change distributions Advantage: Optimality properties can be proved under certain ideal assumptions Exponential weighted moving average (EWMA) test Introduced by Roberts in 1959 and studied in statistics literature Detects drift in mean of a sequence and tracks it (continuously) How does it work? Smoothens small changes and enhances big changes Essentially a first-order auto-regressive process Advantage: Easy to implement in practice Works well with no specific assumptions on underlying distributions 19

20
EWMA Test Time-window = No. of days of terrorist activity ( X n ) Total no. of attacks in the time-window ( Y n ) Update equations for statistic: First-order auto-regressive process are smoothing parameters, designed experimentally, small values work best Stopping time: chosen to optimize trade-off between FAR & Det. delay 20

21
Detecting Spurts: EWMA Conclusions: EWMA statistic detects persistent changes and tracks underlying process But short moderate changes are not tracked 21

22
Proposed Solution 2 (State Estimation) Methodology: Train: Learn HMM parameters (p 0, q 0, Active rate and Inactive rate) – Baum-Welch/EM algorithm Test: Verify inter-arrival duration density during Active/Inactive periods – Q-Q plots, scatter diagram Classify States: As Active/Inactive – Viterbi algorithm, non-linear filtering (small hit over VA) 22

23
Detecting Spurts and Downfalls: Shining Path 23

24
Concluding Remarks A competing model for activity profile Desired Qualities in an Ideal Model: Motivated by a small set of hypotheses Yes, 3 hypotheses. Are these hypotheses justified? Robust to looseness in hypothesis statements? Intentions do not matter?! Described by few parameters Yes, 4 parameters in the simplest setting Describes data sufficiently accurately Yes, for spurt /downfall detection and tracking activity. No, in general. Refine the model to incorporate heavy tails, non-geometric density, spatio-temporal, etc. Robust to missing or mis-labeled data Ongoing work 24

25
Concluding Remarks Ripley’s K function Indonesia/Timor-Leste attacks have abnormal tails (36 attacks on one day!) – cant see how a 2-state HMM with geometric obs. density will work for this dataset 25 Is a self-exciting model necessary to explain clustering?

Similar presentations

© 2016 SlidePlayer.com Inc.

All rights reserved.

Ads by Google